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1.0 INTRODUCTION 

 

Tub girders are often selected over I-girders because of their pleasing appearance offering a 

smooth, uninterrupted, cross section.  Bracing, web stiffeners, utilities, and other structural and 

nonstructural components are typically hidden from view within the steel tub girder, leading to a 

clean, uncluttered appearance.  Additionally, steel tub girder bridges offer advantages over other 

superstructure types in terms of span range, stiffness, durability, and future maintenance.   

 

Steel tub girders can potentially be more economical than steel plate I-girders in long span 

applications due to the increased bending strength offered by their wide bottom flanges, and 

because they require less field work due to handling fewer pieces.  Steel tub girders can also be 

suitable in short span ranges as well, especially when aesthetic preferences or constructibility 

considerations preclude the use of other structure types.  However, tub girders should be no less 

than 5 feet deep to allow access for inspection, thus limiting their efficiency in short span 

applications. 

 

Tub girders, as closed-section structures, provide a more efficient cross section for resisting 

torsion than I-girders.  The increased torsional resistance of a closed composite steel tub girder 

also results in an improved lateral distribution of live loads.  Tub girders offer some distinct 

advantages over I-girders in particular for horizontally curved bridges since the torsional 

stiffness of a tub girder is much larger than the torsional stiffness of an I-girder.  The high 

torsional resistance of individual tub-girder sections permits the tub girder to carry more of the 

load applied to it rather than shifting the load to the adjacent tub girder with greater radius, as is 

the case for torsionally weaker I-girders.  The tendency to more uniformly share gravity loads 

reduces the relatively large and often troubling deflection of the girder on the outside of the 

curve.  Also less material needs to be added to tub girders to resist the torsional effects.  Torsion 

in tub sections is resisted mainly by St. Venant torsional shear flow.  The warping constant for 

closed-box sections is approximately equal to zero.  Thus, warping shear and normal stresses due 

to warping torsion are typically quite small and are usually neglected. 

The exterior surfaces of tub girders are less susceptible to corrosion since there are fewer details 

for debris to accumulate, in comparison to an I-girder structure.  For tub girders, stiffeners and 

most diaphragms are located within the tub girder, protected from the environment.  

Additionally, the interior surface of the tub girder is protected from the environment, further 

reducing the likelihood of deterioration.  Tub girder bridges tend to be easy to inspect and 

maintain since much of the inspection can occur from inside the tub girder, with the tub serving 

as a protected walkway. 

 

Erection costs for tub girders may be lower than that of I-girders because the erection of a single 

tub girder, in a single lift, is equivalent to the placement and connection of two I-girders.  Tub 

girders are also inherently more stable during erection, due to the presence of lateral bracing 

between the top flanges.  Overall, the erection of a tub girder bridge may be completed in less 

time than that of an I-girder counterpart because there are fewer pieces to erect, a fewer number 

of external diaphragms to be placed in the field, and subsequently fewer field connections to be 

made.  This is a significant factor to consider when available time for bridge erection is limited 

by schedule or site access. 
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In many instances, these advantages are not well reflected in engineering cost estimates based 

solely on material quantity comparisons.  Consequently, tub girder bridges have historically been 

considered more economical than I-girder bridges only if their use resulted in a reduction in the 

total number of webs in cross section, particularly for straight bridges.  However, if regional 

fabricators have the experience and equipment to produce tub girders efficiently, the 

competitiveness of tub girders in a particular application can be enhanced.  Therefore, the 

comparative economies of I- and tub girder systems should be evaluated on a case-by-case basis, 

and the comparisons should reflect the appropriate costs of shipping, erection, future inspection 

and maintenance as well as fabrication.    

 

Furthermore, designers should not feel limited by overly-strict reading of the AASHTO design 

provisions for tub girders in some cases.  For example, there are currently cross-sectional 

limitations placed on the use of approximate live load distribution factors for straight tub girders 

in the AASHTO LRFD Bridge Design Specifications [1].  Limiting the proportions of tub girder 

cross-sections solely to allow the use of these approximate live load distribution factors (to allow 

the use of simplified analysis methods) may reduce the efficiency and competitiveness of a tub-

girder cross-section.  However, these cross-section proportion limitations do not apply when a 

refined analysis is employed; thus the use of a refined analysis method allows the designer to 

explore additional, and perhaps more economical, design options.   

 

This design example demonstrates the design of a horizontally curved three-span continuous 

composite tub girder bridge with a span arrangement of 160′-0″ – 210′-0″ – 160′-0″.  This 

example illustrates the flexural design of a section in positive flexure, the flexural design of a 

section in negative flexure, computation of distortional stresses, the shear design of the web, the 

design of the bottom flange longitudinal stiffener, the design of an internal diaphragm, the design 

of a top flange lateral bracing member, the design of a bolted field splice, as well as other design 

and analysis related topics.   

 

The bridge cross-section consists of two trapezoidal tub girders with the top flanges of each tub 

spaced at 10′-0″ on centers, 12′-6″ between the centerline of adjacent top tub flanges, and 4′-0″ 

overhangs for a deck width of 40′-6″ out-to-out.  For the sake of brevity, only the AASHTO 

LRFD Strength I and Service II load combinations are demonstrated in this design example.  The 

effects of wind loads are not considered.  The reader may refer to Design Example 1: Three-Span 

Continuous Straight Composite I-Girder for information regarding additional load combination 

cases and wind load effects.   

 

The example calculations provided herein comply with the current AASHTO LRFD Bridge 

Design Specifications (7
th

 Edition, 2014), but the analysis described herein was not performed as 

part of this design example.  The analysis results and general superstructure details contained 

within this design example were taken from the design example published as part of the National 

Cooperative Highway Research Program (NCHRP) Project 12-52 published in 2005, titled 

“AASHTO-LRFD Design Example: Horizontally Curved Steel Box Girder Bridge, Final 

Report” [2]. 
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2.0 OVERVIEW OF LRFD ARTICLE 6.11 

 

The design of tub girder flexural members is contained within Article 6.11 of the Seventh 

Edition of the AASHTO LRFD Bridge Design Specifications [1], referred to herein as AASHTO 

LRFD (7
th

 Edition, 2014).  The provisions of Article 6.11 are organized to correspond to the 

general flow of the calculations necessary for the design of tub girder flexural members.  Most of 

the provisions are written such that they are largely self-contained, however to avoid repetition, 

some portions of Article 6.11 refer to provisions contained in Article 6.10 for the design of I-

girder sections when applicable (particularly those pertaining to tub girder top flange design, 

which is fundamentally similar to I-girder design).  The provisions of Article 6.11 are organized 

as follows: 

 

6.11.1 General 

6.11.2 Cross-Section Proportion Limits 

6.11.3 Constructibility 

6.11.4 Service Limit State 

6.11.5 Fatigue and Fracture Limit State 

6.11.6 Strength Limit State 

6.11.7 Flexural Resistance - Sections in Positive Flexure 

6.11.8 Flexural Resistance - Sections in Negative Flexure  

6.11.9 Shear Resistance 

6.11.10 Shear Connectors 

6.11.11 Stiffeners 

 

It should be noted that Article 6.11, and specifically Article 6.11.6.2, does not permit the use of 

Appendices A6 and B6 because the applicability of these provisions to tub girders has not been 

demonstrated; however, Appendices C6 and D6 are generally applicable.  Flow charts for 

flexural design of steel girders according to the LRFD provisions, along with an outline giving 

the basic steps for steel-bridge superstructure design, are provided in Appendix C6.   Appendix 

C6 provides a useful reference for tub girder design. Fundamental calculations for flexural 

members are contained within Appendix D6. 

 

Example calculations demonstrating the provisions of Article 6.10, pertaining to I-girder design, 

are provided in Example 1 for a straight I-girder bridge, and Example 4 for a horizontally curved 

I-girder bridge within this Steel Bridge Design Handbook.  This design example will highlight 

several of the provisions of the AASHTO LRFD (7
th

 Edition, 2014) as they relate to horizontally 

curved tub girder design. 

 

One significant difference between the AASHTO LRFD (7
th

 Edition, 2014) and earlier LRFD 

Specifications (prior to the Third Edition) is the inclusion of the flange lateral bending stress in 

the design checks.  The provisions of Articles 6.10 and 6.11 provide a unified approach for 

consideration of major-axis bending and flange lateral bending for both straight and curved 

bridges.  Bottom flange lateral bending stresses in tub girders tend to be quite small, due to the 

width of the bottom flange, and can typically be neglected.  Top flange lateral bending is caused 

by the outward thrust due to web inclination, wind load, temporary support brackets for deck 

overhangs, curvature, and from loads applied by the lateral bracing system. 
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In addition to providing adequate strength, the constructibility provisions of Article 6.11.3 ensure 

that nominal yielding does not occur and that there is no reliance on post-buckling resistance for 

main load-carrying members during critical stages of construction.  The AASHTO LRFD (7
th

 

Edition, 2014) specifies that for critical stages of construction, both compression and tension 

flanges must be investigated, and the effects of top flange lateral bending should be considered 

when deemed necessary by the Engineer.  For noncomposite top flanges in compression, 

constructibility design checks ensure that the maximum combined stress in the flange will not 

exceed the specified minimum yield strength, the member has sufficient strength to resist lateral 

torsional and flange local buckling, and that web-bend buckling will not occur.  For 

noncomposite bottom flanges in compression, during critical stages of construction, local 

buckling of the flange is checked in addition to the web bend-buckling resistance.  For 

noncomposite top and bottom flanges in tension, constructibility design checks make certain that 

the maximum combined stress will not exceed the specified minimum yield strength of the 

flanges during construction.   

 

One additional requirement specified particularly for tub girders sections is in regard to 

longitudinal warping and transverse bending stresses.  When tub girders are subjected to torsion, 

their cross-sections become distorted, resulting in secondary bending stresses.  Therefore, as 

specified in Article 6.11.5, longitudinal warping stresses and transverse bending stresses due to 

cross-section distortion are to be considered for: 

 

 Single tub girders in straight or horizontally curved bridges; 

 Multiple tub girders in straight bridges that do not satisfy requirements of Article 

6.11.2.3; 

 Multiple tub girders in horizontally curved bridges; or 

 Any single or multiple tub girder with a bottom flange that is not fully effective 

according to the provisions of Article 6.11.1.1. 

 

In accordance with Article 6.11.1.1, transverse bending stresses due to cross section distortion 

are to be considered for fatigue as specified in Article 6.11.5, and at the strength limit state.  

Transverse bending stresses at the strength limit state are not to exceed 20.0 ksi.  Longitudinal 

warping stresses due to cross-section distortion are to be considered for fatigue as specified in 

Article 6.11.5, but may be ignored at the strength limit state.  Article C6.11.1.1 allows the use of 

the beam-on-elastic-foundation (BEF) analogy developed by Wright and Abdel-Samad [3] for 

determining the transverse bending stresses and the longitudinal warping stresses due to cross-

section distortion.  The BEF analogy is discussed in more detail within the calculations provided 

in this design example. 

 

Even though the longitudinal warping stresses and transverse stresses are generally considered 

small and could be neglected, there are bridge designs where such an assumption may not be the 

case.  There may be particular designs where these stresses warrant consideration by designer for 

the strength limit state for the tub girder as well as field splices.  These bridge types may include 

those with small radii of curvature, skewed supports, and/or long spans. 
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3.0 DESIGN PARAMETERS 

 

The following data apply to this design example: 

 

Specifications: 2014 AASHTO LRFD Bridge Design Specifications, Customary U.S. 

Units, Seventh Edition [1] 

Structural Steel: AASHTO M270, Grade 50W (ASTM A709, Grade 50W) uncoated 

weathering steel with Fy = 50 ksi, and conservatively Fu = 65 ksi 

Concrete: f’c = 4.0 ksi, = 150 pcf 

Slab Reinforcing Steel: AASHTO M31, Grade 60 (ASTM A615, Grade 60) with Fy = 60 ksi 

 

The bridge has spans of 160′-0″ – 210′-0″ – 160′-0″ measured along the centerline of the bridge.  

Span lengths are arranged to give relatively equal positive dead load moments in the end spans 

and center span.  The radius of the bridge is 700 ft at the centerline of the bridge.   

 

The out-to-out deck width is 40.5 ft, and the bridge is to be designed for three 12 ft traffic lanes.  

The roadway is superelevated at 5 percent.  All supports are radial to the roadway.  The framing 

consists of two trapezoidal tub girders with the top of the webs in each tub spaced 10 ft apart at 

the top of the tub and with a deck span of 12.5 ft between the top of the interior webs of the two 

adjacent tubs. 

 

Structural steel having a specified minimum yield stress of 50 ksi is used throughout the bridge.  

The deck is a conventional cast-in-place concrete deck, with a specified minimum 28-day 

compressive strength of 4,000 psi.  The structural deck thickness is 9.5 inches, and there is no 

integral wearing surface assumed.  The deck haunch is 4.0 inches thick, measured from the top 

of the web to the bottom of the deck, and is constant throughout the structure.  The width of the 

haunch is assumed to be 20.0 inches for weight computations.   

 

Shear connectors are provided along the entire length of each top flange, therefore the tub girders 

in this example are composite throughout the entire span, including regions of negative flexure.  

The shear connectors are 7/8 inch diameter by 6 inches in length.  All tub girders (whether 

straight or curved) are subject to torsional loading, and the use of shear connectors along the 

entire length of a tub girder bridge (in both the positive and negative moment regions) is required 

to ensure an adequate and continuous load path for St. Venant torsional shear flows along the 

entire length of the girder. 

 

Permanent steel stay-in-place deck forms are used between the girders; the forms are assumed to 

weigh 15.0 psf since it is assumed concrete will be in the flutes of the deck forms. In this 

example, the steel stay-in-place deck forms are used between the top flanges of individual tub 

girders and between the top flanges of adjacent girders. Sequential placement of the concrete 

deck is considered in this design example. 

 

An allowance for a future wearing surface of 30.0 psf is incorporated in the design.  Parapets are 

each assumed to weigh 495 lb/ft. 
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The bridge is designed for HL-93 live load, in accordance with Article 3.6.1.2.  Multiple 

presence factors are accounted for in the analysis, as specified in Article 3.6.1.1.2  Live load for 

fatigue is taken as defined in Article 3.6.1.4.  The bridge is designed for a 75-year fatigue life, 

and single lane Average Daily Truck Traffic (ADTT)SL in one direction is assumed to be 1,000 

trucks per day. 

 

The bridge site is assumed to be located in Seismic Zone 1, and so seismic effects are not 

considered in this design example. 
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4.0 GENERAL STEEL FRAMING CONSIDERATIONS 

 

Composite tub girder bridges fabricated using uncoated weathering steel have performed 

successfully without any interior corrosion protection.  However, the interiors of tub girders 

should always be coated in a light color to aid visibility during girder inspection.  Without owner 

direction towards a specific coating and preparation, girder interiors should receive a light brush 

blast and be painted with a white or light colored paint capable of telegraphing cracks in the steel 

section.  Specified interior paint should be tolerant of minimal surface preparation.  At the 

Engineer’s discretion, an allowance may be made for the weight of the paint. 

 

Provisions for adequate draining and ventilation of the interior of the tub are essential.  As 

suggested in the NSBA Publication Practical Steel Tub Girder Design [4], bottom flange drain 

holes should be 1 ½ inches in diameter and spaced along the low side of the bottom flange every 

50 feet, and be placed 4 inches away from the web plate.  Access holes must be provided to 

allow for periodic structural inspection of the interior of the tub.  The access holes should 

provide easy access for authorized inspectors.  Solid doors can be used to close the access holes, 

however they should be light in weight, and they should be hinged and locked, but not bolted.  

Wire mesh screens should always be place over copes and clips in end plates, and over the 

bottom flange drain holes to prevent entry of wildlife and insects.  Wire mesh should be 10 gage 

to withstand welding and blasting and have a weave of approximately ½ inch by ½ inch.   

 

Additional detailing guidelines can be found at the NSBA’s Website (www.steelbridges.org), 

with particular attention given to document AASHTO/NSBA Steel Bridge Collaboration 

document G1.4, Guidelines for Design Details [5].  Four other detailing references offering 

guidance include the NSBA Publication Practical Steel Tub Girder Design [4], the Texas Steel 

Quality Council’s Preferred Practices for Steel Bridge Design, Fabrication, and Erection [6], 

the Mid-Atlantic States Structural Committee for Economic Fabrication (SCEF) Standards, and 

the AASHTO/NSBA Steel Bridge Collaboration document Guidelines for Design for 

Constructibility [7].   

 

4.1 Span Arrangement 

 

Often, site-specific features will influence the span arrangement required.  Careful consideration 

of the layout of the steel framing is an important part of the design process and involves the 

investigation of alternative span arrangements based on the superstructure and substructure costs 

to arrive at the most economical solution.  In the absence of site constraints, choosing a balanced 

span arrangement for continuous steel bridges (end spans approximately 80% of the length of the 

center spans) will typically provide an efficient design.  The span arrangement for this example 

bridge has spans of 160 feet – 210 feet – 160 feet.  The framing plan of the bridge for this 

example is shown in Figure 1. 
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Figure 1  Framing Plan of the Tub Girder Bridge (all lengths shown are taken along the 

centerline of the bridge) 
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4.2 Field Section Sizes 

 

The lengths of field sections are generally dictated by shipping (weight and length) restrictions.  

Generally, the weight of a single shipping piece is restricted to 200,000 lbs, while the piece 

length is limited to a maximum of 140 feet, with an ideal piece length of 120 feet.  However, 

shipping requirements are typically dictated by state or local authorities, in which additional 

restrictions may be placed on piece weight and length.  Handling issues during erection and in 

the fabrication shop also need to be considered in the determination of field section lengths, as 

they may govern the length of field sections.  Therefore, the Engineer should consult with 

contractors and fabricators regarding any specific restrictions that might influence the field 

section lengths.   

 

Field section lengths should also be determined with consideration given to the number of field 

splices required, as well as the locations of the field splices.  It is desirable to locate field splices 

as close as possible to dead load inflection points, so as to reduce the forces that must be carried 

by the field splice.  Field splices located in higher moment regions can become quite large, with 

cost increasing proportionally to their size.  The Engineer should determine an economical 

solution for the particular span arrangement.  For complex and longer span bridges, the 

fabricator’s input can be helpful in reaching an economical solution. 

 

The final girder field section lengths are shown on the framing plan in Figure 1.  The longest 

field section is the field section of Girder G2 over the pier, and has a length of approximately 

116.75 feet.    This field section is also the heaviest field section, with a total approximate weight 

of 99,000 pounds (including internal cross frames, top flange lateral bracing, and other steel 

details).    

 

In curved girder bridges, the Engineer must also consider the girder sweep and the subsequent 

total width when determining the lengths of the field sections.  The curvature combined with the 

girder length can cause the field section to be too wide to transport, depending on shipping routes 

and local requirements.  In the case of the field section of Girder G2 over the pier, the total width 

of the tub girder including girder sweep and the width of the top flanges is approximately 13.90 

feet. 

 

4.3 Bridge Cross Section and Girder Spacing 

 

When developing the bridge cross-section, the designer will evaluate the number of girder lines 

required, relative to the overall cost.  Specifically, the total cost of the superstructure is a 

function of steel quantity, details, and erection costs.  Developing an efficient bridge cross-

section should also give consideration to providing an efficient deck design, which is generally 

influenced by girder spacing and overhang dimensions.  Specifically, with the exception of an 

empirical deck design, girder spacing significantly affects the design moments in the deck slab.  

In the case of tub girder bridges, which are comprised of torsionally stiff units, the deck should 

be designed to accommodate the transverse bending associated with differential girder deflection 

as shown in Figure C9.7.2.4-1 of the AASHTO LRFD (7
th

 Edition, 2014).  Larger deck overhangs 

result in a greater load on the exterior web of the tub girder.  Larger overhangs will increase the 
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bending moment in the deck, caused by the cantilever action of the overhang, resulting in 

additional deck slab reinforcing for the overhang region of the deck.   

 

In addition, wider deck spans between top flanges can become problematic for several reasons.  

Some owners have economical deck detail standards for cast-in-place decks that may not be 

suited, or even permitted, for wider deck spans.  At the same time, wider deck spans are 

progressively more difficult to form and construct.  Wider deck spans also limit options for 

future deck replacement and partial deck removal.  If bolder spacings and/or overhangs are used, 

a vaulted precast deck with transverse post-tensioning may be the most economical choice. 

 

As shown in Figure 2, the example bridge cross-section consists of two trapezoidal tub girders 

with top flanges spaced at 10.0 feet within each tub girder, 12.5 feet between the centerline of 

adjacent top flanges, with 4.0 feet deck overhangs, and an out-to-out deck width of 40.5 feet.  

The 37.5 feet roadway width can accommodate up to three 12-foot-wide design traffic lanes.  

The total thickness of the cast-in-place concrete deck is 9.5 inches with no integral wearing 

surface.  The concrete deck haunch is 4 inch deep measured from the top of the web to the 

bottom of the deck.   

 

 
Figure 2  Cross Section of the Tub Girder Bridge [2] 

 

4.4 Intermediate Internal and External Cross-Frames 

 

Internal intermediate cross-frames are provided in tub girders to control cross-sectional 

distortion.  Cross-sectional distortion results due to the St. Venant torsion shear flow changing 

direction at the corners of the tub.  Cross-sectional distortion introduces additional stresses in the 

tub girder and, therefore, should be minimized.  The distortion stresses basically occur because 

the section is not perfectly round.  The shear flow must change direction at the corners, which 

tends to warp the cross-section.  Adequate internal cross-bracing usually controls the magnitude 

of these stresses in tub girders of typical proportion such that they are not critical to the ultimate 
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resistance of the tub section at the strength limit state.  As a minimum, internal cross-frames 

should be placed at points of maximum moment within a span and at points adjacent to field 

splices in straight bridges.  Spacing of internal diaphragms, considered during development of 

the framing plan, should be influenced by factors such as the angle and length of the lateral 

bracing members.   

 

Most cross-frames in modern tub girder bridges are K-frames, which allow better access during 

construction and inspection.  Slenderness requirements (KL/r) generally govern the design of 

cross-frame members, however handling and strength requirements should always be 

investigated.  When refined analysis methods are used and the cross-frame members are included 

in the structural model to determine force effects, the cross-frame members are to be designed 

for the calculated force effects.  Consideration should be given to the cross-frame member forces 

during construction.  When simplified analysis methods are used, such cross-frame forces due to 

dead and live loads are typically difficult to calculate.  Therefore, the cross-frame members 

should at least be designed to transfer wind loads and carry construction loads due to deck 

overhang brackets, control tub girder cross section distortion, and satisfy appropriate slenderness 

requirements.   

 

External intermediate cross-frames may be incorporated to control the differential displacements 

and rotations between individual tub girders during deck placement.  In a finished bridge, when 

the tub girders are fully closed and the concrete deck effectively attaches the girders together, 

twist rotation is expected to be small and external cross-frames are not necessarily required.   

 

External intermediate cross-frames typically utilize a K-frame configuration, with the depth 

closely matching the girder depth for efficiency and simplification of supporting details.  At 

locations of external intermediate cross-frames, there should be bracing inside the tub girder to 

receive the forces of the external bracing.  In some cases, for aesthetic reasons, it may be 

desirable to remove the external intermediate cross-frames after the deck has hardened.  

However, extreme care should be taken in evaluating the effects that the removal of external 

intermediate cross-frames has on the structure.  The NSBA Publication Practical Steel Tub 

Girder Design [4] offers discussion on this topic. 

 

Based on the preceding considerations, the internal cross-frame spacings shown on the framing 

plan in Figure 1 were chosen for this example. The tub girders are braced internally at 

intermediate locations with K-type cross-frames, where the diagonals intersect the top strut at the 

top flange level.  The internal cross-frames are uniformly spaced in the end span and center span 

field sections.  Internal cross-frame spacing in the center span positive flexure region is 15 feet.  

The top struts, both the individual struts and the ones that are part of internal cross-frames, also 

serve as part of the top flange lateral bracing system.  Article C6.11.3.2 allows top lateral bracing 

attached to the flanges at points where only struts exist between the flanges to be considered as 

brace points at the discretion of the Engineer. 

 

The design of the internal cross frame members is not shown in this example.  Internal cross 

frames were modeled as truss members in the three-dimensional analysis, with a cross-sectional 

area of 5.0 square inches.  There are no intermediate external cross frames provided between the 

tub girders in this design example. 
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4.5 Diaphragms at the Supports 

 

Internal diaphragms at points of support are typically full-depth plates with a top flange.  These 

diaphragms are subjected to bending moments which result from the shear forces in the inclined 

girder webs.  If a single bearing is used at the support, and the bearing sole plate does not span 

the full width of the girder bottom flange, bending of the internal diaphragm over the support 

will result, causing bending stresses in the top flange of the diaphragm and the bottom flange of 

the tub girder.  Additionally, a torsional moment reaction in the tub girder at the support will 

induce a shear flow along the circumference of the internal diaphragm.  In order to provide the 

necessary force transfer between the tub girder and the internal diaphragms, the internal 

diaphragms should be connected to the web and top flanges of the tub girder.   

 

Inspection access at the interior supports must also be provided through the internal diaphragm. 

Typically, an access hole will be provided within the internal diaphragm; however care must be 

taken in determining the location and size of the hole.  The Engineer must investigate the flow of 

stress at the location of the hole in order to verify the sufficiency of the web near the access hole, 

or if reinforcing of the web may be required at the access hole. 

 

Similar to internal diaphragms, external diaphragms are typically full-depth plate sections, but 

with top and bottom flanges.  As acknowledged in the NSBA publication Practical Steel Tub 

Girder Design [4], the behavior of an external diaphragm at a point of support is highly 

dependent on the bearing arrangement at that location.  If dual bearings used at each girder 

sufficiently prevent transverse rotation, external diaphragms at the point of support should 

theoretically be stress free.  The force couple behavior of a dual bearing system resists the 

torsion that would otherwise be resisted by the external diaphragm and, in turn, minimizes the 

bending moments applied to the external diaphragm. 

 

In accordance with Article 6.7.4.3, full-depth internal and external diaphragms are provided at 

the support lines in this design example.  The web plates for the internal and external diaphragms 

in the three-dimensional analysis are assumed to have a thickness of 0.5 inches.  The external 

diaphragm top and bottom flanges are assumed to have an area of 8.0 square inches for each 

flange.   

 

4.6 Top Flange Lateral Bracing 

 

In accordance with Article 6.7.5.3, for horizontally curved tub girders, a full-length lateral 

bracing system between common flanges of individual tub sections is to be provided, and the 

stability of compression flanges between panel points of the lateral bracing system is to be 

investigated during the deck placement.  Generally, lateral bracing will not be required between 

adjacent tub girders.   

 

Top flange lateral bracing creates a quasi-closed section, which increases the torsional stiffness 

of tub girder sections during erection, handling, and deck casting.  For composite tub girders 

closed by the deck slab, the cross-section of the tub is torsionally stiff.  However, prior to 



 

13 

 

placement of the deck slab, the open tub is torsionally more flexible and subject to rotation or 

twist.  The top flange lateral bracing, then, forms a quasi-closed section resisting shear flow from 

the noncomposite loading.   

 

Top lateral bracing is to be designed to resist shear flow in the pseudo box section due to 

factored loads before the concrete deck has hardened or is made composite.  Forces in the 

bracing due to flexure of the tub girder should also be considered during construction based on 

the Engineer’s assumed construction sequence.  The top lateral bracing member forces can be 

determined using a refined three-dimensional analysis where the bracing members are explicitly 

modeled.  Or, in the absence of a refined analysis, design equations have been developed to 

evaluate the bracing member forces due to tub girder major-axis bending [8 and 9]. 

 

The lateral bracing is typically comprised of WT or angle sections and is often configured in a 

single diagonal arrangement, such as a Warren-type or Pratt-type truss system.  The diagonal 

bracing members commonly frame into the work point of the girder top flange and internal 

diaphragm or strut connection.  Alternatively, the length between internal cross-frames can be 

divided into multiple lateral bracing panels.  Such framing arrangements usually include a single 

transverse strut at intermediate brace locations.  The plane of the top flange lateral bracing 

system should be detailed to be as close as possible to the plane of the girder top flanges so as to 

increase the torsional stiffness of the section, while at the same time reducing connection 

eccentricities and excessive out-of-plane bending in the web.  In most cases the top flange lateral 

bracing is often attached directly to the top flange of the tub girders. 

 

Single diagonal top lateral bracing systems are preferred over X-type systems because there are 

fewer pieces to fabricate and erect, and fewer connections.  Warren-type and Pratt-type systems 

offer some advantages with regard to the behavior of each top flange lateral bracing system.  In a 

Warren-type system, the bracing members alternate directions along the length of the bridge (see 

Figure 3).  In most cases, the bracing forces will alternate from tension to compression along the 

length of the bridge.  The tension and compression forces result from a combination of girder 

major-axis bending and girder torsion.  If necessary, the flange lateral bending stresses and 

forces in the lateral bracing members can often be effectively mitigated by the judicious 

placement of parallel single-diagonal members in a Pratt-type configuration.  In a Pratt-type 

system, the bracing members should be oriented based on the sign of the torque so that the forces 

induced in these members due to torsion offset the compressive or tensile forces induced in the 

same members due to major-axis bending of the tub section, thus allowing for smaller brace sizes 

(see Figure 4).   

 
Figure 3  Plan View of a Warren-type truss lateral bracing system [1] 
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Figure 4  Plan View of a Pratt-type truss lateral bracing system [1] 

 

As shown in Figure 1, a Warren-Type single diagonal top lateral bracing system is used in this 

design example.  The bracing is assumed to be directly connected to the flanges at each internal 

cross frame and internal top strut; thus the bracing is assumed to lie in the plane of the top flange 

in the design calculations.  The connection of the top flange lateral bracing directly to the flanges 

may require wider flanges than might otherwise be required by design, however this approach 

may still be more economical considering the high fabrication cost associated with gusset plates 

for the connections. 

 

Truss members with an area of 8.0 square inches were assumed for the top flange lateral bracing 

members in the three-dimensional analysis. However, design calculations show that a WT9x48.5 

is required, which has a cross-sectional area of 14.3 square inches.  Although not done in this 

example, the designer should perform a second iteration of the analysis with this larger cross-

sectional area, as the larger cross-sectional area will affect the load distribution in the bracing 

system in the noncomposite condition. 
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5.0 FINAL DESIGN 

 

5.1 AASHTO LRFD Limit States 

 

AASHTO LRFD (7
th

 Edition, 2014) requires that bridges be designed for specified limit states to 

achieve the objectives of constructibility, safety, and serviceability.  These objectives are met 

through the strength, service, fatigue and fracture, and extreme-event limit states.  These limit 

states are intended to provide a safe, constructible, and serviceable bridge capable of carrying the 

appropriate design loads for a specified service life.  A brief discussion of these limit states is 

provided herein, but the reader can refer to Steel Bridge Design Handbook topic on Limit States 

for more detailed discussion. 

 

5.1.1 Strength Limit State 

 

The strength limit states ensure strength and stability of the bridge and its components under the 

statistically predicted maximum loads during the 75-year life of the bridge.  The strength limit 

states are not based upon durability or serviceability.  There are five different strength limit state 

load combinations that must be considered by the designer.   

 

In general, Strength I is the load combination used for checking the strength of a component 

under normal loading, in the absence of wind.  To check the strength of a member or component 

under special permit loadings in the absence of wind, the Strength II load combination is used.  

The Strength III load combination is used for checking the strength of a component assuming the 

bridge is exposed to a wind velocity exceeding 55 miles per hour in the absence of live load.  

The Strength IV load combination basically relates to bridges with very high dead-to-live load 

force effect ratios.  The Strength V load combination is used to check the strength of a 

component assuming the bridge is exposed to wind velocity equal to 55 miles per hour under 

normal loading. 

 

5.1.2 Service Limit State 

 

The service limit state ensures the durability and serviceability of the bridge and its components 

under typical “everyday” loads, traditionally termed service loads.  The AASHTO LRFD (7
th

 

Edition, 2014) includes four service limit state load combinations of which only two are 

applicable to steel bridges. 

 

The Service I load combination relates to normal operational use of the bridge and would be used 

primarily for crack control in reinforced concrete structures.  However, the live load portion of 

the Service I load combination is used for checking live load deflection in steel bridges.  The 

Service II load combination only applies to steel superstructures, and is intended to control 

yielding of steel structures and slip of slip-critical connections due to vehicular live load. 

 

5.1.3 Fatigue and Fracture Limit State 

 

The fatigue and fracture limit state is treated separately from the strength and service limit states 

since it represents a more severe consequence of failure than the service limit states, but not 



 

16 

 

necessarily as severe as the strength limit states.  Fatigue cracking is certainly more serious than 

loss of serviceability as unchecked fatigue cracking can lead to brittle fracture, yet many 

passages of trucks may be necessary to cause a critically-sized fatigue crack while only one 

heavy truck can lead to a strength limit state failure.  The fatigue and fracture limit state is only 

applicable where the detail under consideration experiences a net applied tensile stress. 

 

The Fatigue I load combination is related to infinite load-induced fatigue life, and the Fatigue II 

load combination is related to finite load-induced fatigue life. 

 

5.1.4 Extreme Event Limit State 

 

Structural survival of the bridge must be ensured during an extreme event, such as an earthquake, 

flood, vessel collision, vehicle collision, or ice flow.  The Extreme Event I load combination is 

related to earthquake loading, while the Extreme Event II load combination relates to the other 

possible extreme events. 

 

5.1.5 Constructibility 

 

Although not a specific limit state, the bridge must be safely erected and have adequate strength 

and stability during all phases of construction, as constructibility is one the basic objectives of 

the AASHTO LRFD (7
th

 Edition, 2014).  Specific design provisions are given in Articles 6.10.3 

and 6.11.3 for I- and tub-girders, respectively, to help ensure constructibility.  The 

constructibility checks are typically performed on the steel section only under the factored 

noncomposite dead loads using appropriate strength load combinations, especially when 

considering the deck placement sequence.  Article 3.4.2 provides further guidance on the specific 

strength load combinations to be considered in the constructibility checks, and on the load 

factors to use for construction loads. 

 

5.2 Loads 

 

5.2.1 Dead Load 

 

As defined in Article 3.5.1, dead loads are permanent loads that include the weight of all 

components of the structure, appurtenances and utilities attached to the structure, earth cover, 

wearing surfaces, future overlays and planned widenings. 

 

The component dead load (DC) consists of all the structure dead load except for non-integral 

wearing surfaces, if anticipated, and any specified utility loads. For composite steel-girder 

design, DC is further divided into:  

 

 Non-composite dead load (DC1) is the portion of loading resisted by the non-composite 

section.  DC1 represents the permanent component load that is applied before the concrete 

deck has hardened or is made composite.  

 Composite dead load (DC2) is the portion of loading resisted by the long-term composite 

section.  DC2 represents the permanent component load that is applied after the concrete 

deck has hardened or is made composite.  
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The self-weight of the steel girders, cross-frames, diaphragms, lateral bracing and other 

attachments is applied to the erected steel structure in the three-dimensional model through the 

use of body forces in the various finite elements used to model the structure.  A steel density of 

490 pounds per cubic foot is assumed for all structural steel components.  The analysis assumes 

that the steel is fit and erected in the no-load condition.  The steel self-weight is a non-composite 

dead load (DC1). 

 

The concrete deck weight is assumed to be placed at one time on the noncomposite steel 

structure for the strength limit state checks.  A separate deck placement sequence analysis is 

performed, where the analysis results are used for constructibility checks.  The deck placement 

sequence is discussed later in this section.  The deck weight includes the deck and concrete 

haunches, as well as an assumed weight of 15 pounds per square foot for the permanent metal 

deck forms inside the tub girders and between the two tub girders.  The concrete deck weight, 

haunch weight, and permanent metal deck form weight are all considered to be non-composite 

dead loads (DC1). 

 

The composite dead load (DC2), also referred to as a superimposed dead load, includes the 

weight of the parapets.  The parapets are assumed to weigh 495 pounds per linear foot.  The 

parapet weight is applied as line loads along the edges of the deck elements in the three-

dimensional analysis. 

 

The component dead load (DW) consists of the dead load of any non-integral wearing surfaces 

and any utilities, which can also be considered as superimposed dead loads.  DW is applied as a 

surface load on the deck in the 3D analysis.  For this example, a future wearing surface of 30 

pounds per square foot of roadway is assumed, but no utilities are included.   

 

For computing flexural stresses from composite dead loads DC2 and DW, the stiffness of the 

long-term composite section in regions of positive flexure is calculated by transforming the 

concrete deck using a modular ratio of 3n (Article 6.10.1.1.1b).  In regions of negative flexure, 

the long-term composite section is typically assumed to consist of the steel section plus the 

longitudinal reinforcement within the effective width of the concrete deck (Article 6.10.1.1.1c). 

 

5.2.2 Deck Placement Sequence 

 

The deck is considered to be placed in the following sequence for the constructibility limit state 

design checks, which is also illustrated in Figure 5.  The concrete is first cast from the left 

abutment to a location near the dead load inflection point in Span 1.  The concrete between 

approximate dead load inflection points in Span 2 is cast second.  The concrete beyond the 

approximate dead load inflection point to the abutment in Span 3 is cast third.  Finally, the 

concrete over the two piers is cast.  In the analysis, earlier concrete casts are assumed fully 

composite for each subsequent cast. 

 

For the constructibility limit state design checks, the noncomposite section is checked for the 

moments resulting from the deck placement sequence or the moments computed assuming the 

entire deck is cast at one time, whichever is larger. 
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The weight of the fresh concrete on the overhang brackets, along with other loads applied to the 

brackets, produces lateral forces on the outermost top flange of G2 and the innermost top flange 

of G1.  This eccentric loading and subsequent lateral forces on the top flanges must be 

considered in the constructibility limit state design checks. 

 

 
Figure 5  Diagram showing deck placement sequence  
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5.2.3 Live Load 

 

Live loads are assumed to consist of gravity loads (vehicular live loads, rail transit loads and 

pedestrian loads), the dynamic load allowance, centrifugal forces, and braking forces. Live loads 

illustrated in this example include the HL-93 vehicular live load and a fatigue load, with the 

appropriate dynamic load allowance and centrifugal force (see Section 5.3) effects included. 

 

Influence surfaces are utilized to determine the live load force effects in this design example.  

More details regarding influence surfaces and the live load analysis associated with the 3D 

analysis model are provided in Section 6.1.2 of this example.   

 

Live loads are considered to be transient loads applied to the short-term composite (n) section. 

For computing flexural stresses from transient loading, the short-term composite (n) section in 

regions of positive flexure is calculated by transforming the concrete deck using a modular ratio 

of n (Article 6.10.1.1.1b). In regions of negative flexure, the short-term composite (n) section is 

assumed to consist of the steel section plus the longitudinal reinforcement within the effective 

width of the concrete deck (Article 6.10.1.1.1c), except as permitted otherwise for the fatigue 

and service limit states (see Articles 6.6.1.2.1 and 6.10.4.2.1). 

 

When computing longitudinal flexural stresses in the concrete deck (see Article 6.10.1.1.1d), due 

to permanent and transient loads, the short-term composite section should be used.  

 

Design Vehicular Live Load (Article 3.6.1.2) 

 

The design vehicular live load is designated as the HL-93 and consists of a combination of the 

following placed within each design lane: 

 a design truck or design tandem. 

 a design lane load. 

The design vehicular live load is discussed in detail within Example 1 of the Steel Bridge Design 

Handbook. 

 

Fatigue Load (Article 3.6.1.4) 

 

The vehicular live load for checking fatigue consists of a single design truck (without the lane 

load) with a constant rear-axle spacing of 30 feet (Article 3.6.1.4.1).  The fatigue live load is 

discussed in detail within Example 1 of the Steel Bridge Design Handbook. 

 

5.3 Centrifugal Force Computation 

 

The centrifugal force is determined according to Article 3.6.3.  The centrifugal force has two 

components, the radial force and the overturning force.  The radial component of the centrifugal 

force is assumed to be transmitted from the deck through the end cross frames or diaphragms and 

to the bearings and the substructure. 

 

The overturning component of centrifugal force occurs because the radial force is applied at a 

distance above the top of the deck.  The center of gravity of the design truck is assumed to be 6 
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feet above the roadway surface according to the provisions of Article 3.6.3.  The transverse 

spacing of the wheels is 6 feet per Figure 3.6.1.2.2-1.  The overturning component causes the 

exterior (with respect to curvature) wheel line to be more than half the weight of the truck and 

the interior wheel line to be less than half the weight of the truck by the same amount.  Thus, the 

outside of the bridge is more heavily loaded.  The effect of superelevation, which reduces the 

overturning effect of centrifugal force, is considered, as permitted by Article 3.6.3.  Figure 6 

shows the relationship between the centrifugal force and the superelevation effect.  The 

dimensions denoted by s and h in Figure 6 are both equal to 6 feet. 

 

 

 
Figure 6  Vehicular Centrifugal Force Wheel-Load Reactions 

 

Article 3.6.3 states that the centrifugal force is to be taken as the product of the axle weights of 

the design truck or tandem and the factor C, taken as: 

 

 
R g

v
 fC

2

  Eq. (3.6.3-1) 

 

where:  

 

 f  =  4/3 for load combinations other than fatigue and 1.0 for fatigue 

 v  = highway design speed (ft/sec) 

 g = gravitational acceleration = 32.2 ft/sec
2
 

 R  = radius of curvature (ft) 
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Use the average bridge radius, R = 700 ft, in this case.  For the purpose of this design example, 

the design speed is assumed to be 35 mph = 51.3 ft/s.  Therefore, for the HL-93 Design Truck: 

 

  
156.0

7002.32

3.51

3

4
C

2









  

 

The next step is to compute the wheel load reaction, RCL and RCR, due to centrifugal force 

effects, as shown in Figure 6.  In the case of the design truck, the wheel spacing, s, and the height 

of the radial force, h, are both equal to 6.0 feet.  Therefore, summing moments about Point A 

(Figure 6) and enforcing equilibrium, the wheel load reactions, RCL and –RCR are simply equal to 

C multiplied by W, as follows: 
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where:  

 

 W  =  axle weight (kips) 

  

RCL is an upward reaction for the left wheel, and RCR is an equal but opposite downward reaction 

for the right wheel. 

 

As permitted by Article 3.6.3, the effects of superelevation on the individual wheel load 

reactions can be computed and combined with the centrifugal force effects.  For the 5% deck 

cross slope, the angle  is equal to: 

 

  = tan
-1

 (0.05) = 2.86° 

 

The wheel load reactions due to superelevation, RSL and RSR, as shown in Figure 7, are computed 

by summing the moments about the left wheel, as follows: 
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 RSL = 1.0W - RSR = 1.0W – 0.550W = 0.450W 
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Figure 7  Effects of Superelevation of the Wheel-Load Reactions 

 

For a refined analysis, as used in this design example, unit wheel load factors can be computed 

based on the sum of the wheel load reaction due to the centrifugal force and superelevation 

effects.  The unit wheel load factors are applied to the appropriate wheels in the analysis.  Unit 

wheel load factors due to the combined effects of centrifugal force and superelevation can be 

computed for the left wheels, FL, and the right wheels, FR.  The sum of FL and FR must equal 2.0, 

as there are two wheel loads per one axle.  The left and right unit wheel load factors, FL and FR, 

are computed as follows: 

 

212.1
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W450.0W156.0
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W
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As shown in Figure 8, FL and FR represent the factors that must be multiplied by the left wheel 

and right wheel load, respectively, in the analysis to take into account the combined effects of 

both centrifugal force and superelevation.  In this case, since FL is greater than FR, the outermost 

girder will receive a slightly higher load and the innermost girder will receive slightly lower load 

from the design truck.  Therefore, it is also necessary to compute the condition with no 

centrifugal force, i.e., a stationary vehicle, and select the worst case.  In the live load analysis 

performed for this design example, force effects from an analysis due to live load cases with 

centrifugal force effects included (FL equals 1.212 and FR equals 0.788) are compared to force 

effects due to cases with no centrifugal force effects included (FL and FR equal 1.0), and the 

maximum/minimum force effect is selected. 
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Figure 8  Unit Wheel Load Factors due to Combined Effects of Centrifugal Force and 

Superelevation 

 

In accordance with Article C3.6.3, centrifugal force is not required to be applied to the design 

lane load, as the spacing of vehicles at high speed is assumed to be large, resulting in a low 

density of vehicles following and/or preceding the design truck. 

 

From separate calculations for the fatigue limit state, similar to those shown previously, the 

centrifugal force factor C is equal to 0.117, and the unit wheel load factors, FL and FR, are 1.134 

and 0.866, respectively. 

 

5.4 Load Combinations 

 

AASHTO LRFD (7
th

 Edition, 2014) Table 3.4.1-1 is used to determine load combinations for 

strength according to Article 3.4.   Strength I loading is used for design of most members for the 

strength limit state.  However, Load Combinations Strength III and V and Service I and II from 

Table 3.4.1-1 are also checked for temperature and wind loadings in combination with vertical 

loading. 

 

The following load combinations and load factors are typically checked in a girder design similar 

to this design example.  In some design instances, other load cases may be critical, but for this 

example, these other load cases are assumed not to apply. 
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From Table 3.4.1-1 (minimum load factors of Table 3.4.1-2 are not considered here): 

 

Strength I  η x [1.25(DC) + 1.5(DW) + 1.75((LL + IM) + CE + BR) + 1.2(TU)] 

Strength III  η x [1.25(DC) + 1.5(DW) + 1.4(WS) + 1.2(TU)] 

Strength V  η x [1.25(DC) + 1.5(DW) + 1.35((LL + IM) + CE + BR) + 0.4(WS) + 1.0(WL) + 

1.2(TU)] 

Service I  η x [DC + DW + (LL + IM) + CE + BR + 0.3(WS) + WL + 1.2(TU)] 

Service II  η x [DC + DW + 1.3((LL + IM) + CE + BR) + 1.2(TU)] 

Fatigue I η x [1.5((LL + IM) + CE)] 

Fatigue II η x [0.75((LL + IM) + CE)] 

 

where: 

 

η  =  Load modifier specified in Article 1.3.2 

DC  =  Dead load: components and attachments 

DW  =  Dead load: wearing surface and utilities 

LL =  Vehicular live load 

IM  =  Vehicular dynamic load allowance 

CE  =  Vehicular centrifugal force 

WS  =  Wind load on structure 

WL  =  Wind on live load 

TU  =  Uniform temperature 

BR  =  Vehicular braking force 

 

In addition to the above load combinations, two additional load combinations for the 

constructibility checks are defined in Article 3.4.2 as follows: 

Construction: η x [1.25(D) + 1.5(C) + 1.25(WC)] 

                       η x [1.4(D + C)] 

 

where: 

 

D  =  Dead load 

C  =  Construction loads 

WC =  Wind load for construction conditions from an assumed critical direction. 

   Magnitude of wind may be less than that used for final bridge design. 

 

In this design example, for brevity, only the first of these load combinations is 

considered/illustrated in the constructibility checks.  Wind load effects during construction are 

also not considered herein. 

 

For the purpose of this example, it has been assumed that the Strength I load combination 

governs for the strength limit state, so only Strength I loads are checked in the sample 

calculations for the strength limit state included herein.  Also, the load modifier, η, is assumed to 

be 1.0 throughout this example unless noted otherwise.  Furthermore, from a separate analysis, 

the girder demands due to thermal loading are determined to be quite small, and are neglected 

throughout these computations.  
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6.0 ANALYSIS 

 

Article 4.4 of the AASHTO LRFD (7
th

 Edition, 2014) requires that the analysis be performed 

using a method that satisfies the requirements of equilibrium and compatibility, and utilizes 

stress-strain relationships for the proposed materials.  Article 4.6.1.2 provides additional 

guidelines for structures that are curved in plan.  The moments, shears, and other force effects 

required to proportion the superstructure components are to be based on a rational analysis of the 

entire superstructure.  Equilibrium of horizontally curved I-girders is developed by the transfer of 

load between the girders, thus the analysis must recognize the integrated behavior of structural 

components.  Equilibrium of curved tub girders can be somewhat less dependent on the 

interaction between girders, as there are typically fewer external bracing members between 

adjacent tub girders as compared to I-girder bridges. 

 

Furthermore, in accordance with Article 4.6.1.2, the entire superstructure, including bearings, is 

to be considered as an integral structural unit in the analysis.  Boundary conditions should 

represent the articulations provided by the bearings and/or integral connections used in the 

design. 

 

In most cases, small deflection elastic theory is acceptable for the analysis of horizontally curved 

steel girder bridges.  However, curved girders, especially I-girders, are prone to deflect laterally 

when the girders are insufficiently braced during erection, and this behavior may not be 

appropriately recognized by small deflection theory.  In curved tub girder bridges, there is 

typically sufficient bracing provided during steel erection so that deflections do not invalidate the 

use of small deflection elastic theory. 

 

In general, three levels of analysis exist for horizontally curved girder bridges: approximate 

methods of analysis, 2D (two-dimensional) methods of analysis, and 3D (three-dimensional) 

methods of analysis.  The V-load method and the M/R methods are approximate analysis method 

that are typically used to analyze curved I-girder bridges and curved tub girder bridges, 

respectively.  Both methods are developed based on the understanding of the distribution of 

forces through the curved bridge system.  The two primary types of 2D analysis models are the 

traditional grid (or grillage) model and the plate and eccentric beam model.  In 2D analysis 

models, the girders and external cross frames and diaphragms are modeled using beam elements, 

with the nodes for the grid representing the steel superstructure in a single horizontal plane.  A 

3D model recognizes the depth of the superstructure. Two planes of nodes are typically used for 

each girder, one in the plane of the top flanges and the second in the plane of the bottom flanges.  

Further details regarding these methods of analysis can be found in the Steel Bridge Design 

Handbook topic on Structural Analysis. 

 

6.1 Three-Dimensional Finite Element Analysis 

 

A three-dimensional finite element analysis is used to analyze the superstructure in this design 

example.  The girder webs and bottom flanges are modeled using plate elements. The top flanges 

of each tub girder are modeled with beam elements.  The girder elements connect to nodes that 

are placed in two horizontal planes;, one plane at the top flange level and one plane at the bottom 

flange level.  The horizontal curvature of the girders is represented by a series of straight 
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elements connected at the nodes, rather than by curved elements.  Nodes are placed on all flanges 

along the girder at each internal cross frame and top flange lateral bracing location, and typically 

at the middle of each top flange lateral bracing bay.  

 

The composite deck is modeled using a series of eight-node solid elements attached to the girder 

top flanges with rigid beam elements, which represent the shear studs.   

 

Bearings are modeled with dimensionless elements called “foundation elements.”  These 

dimensionless elements can provide six different stiffnesses, with three for translation and three 

for rotation.  If a guided bearing is orientated along the tangential axis of a girder, a translational 

stiffness of zero is assigned to the stiffness in the tangential direction.  The translational stiffness 

of the bearing, and supporting structure if not explicitly modeled, is assigned to the direction 

orthogonal to the tangential axis. 

 

Internal cross frame members are modeled with individual truss elements connected to the nodes 

at the top and bottom flange of the girders.  Internal solid-plate diaphragms at the supports are 

modeled with a single plate element.  External solid-plate diaphragms at the supports are 

modeled using three full-depth plate elements along the length of the diaphragm, and three beam 

elements placed at the top and bottom of the web representing the top and bottom flanges of the 

diaphragm.  Since the plate and beam elements are isoparametric, three sets of elements are used 

to model the web and flanges of the external diaphragm to allow for the possibility of reverse 

curvature. 

 

Top flange lateral bracing members are modeled with individual truss elements connected to 

nodes at the top flanges of the tub girders. 

 

6.1.1 Bearing Orientation and Arrangement 

 

The orientation and lateral restraint of bearings affects the behavior of most girder bridges for 

most load conditions, and is particularly true for curved and skewed girder bridges.  

Furthermore, in tub girder bridges, one or two bearings can be use under each tub girder at each 

support. 

 

The use of two bearings to support an individual girder at a support allows the girder torsion to 

be directly removed through the force couple provided by the bearings, and reduces the reaction 

demand in the bearings.  Two-bearing systems typically work well with radial supports, but are 

impractical with supports skewed more than a few degrees where the tub girder and/or 

diaphragm stiffnesses work against the achievement of uniform bearing contact during various 

stages of girder erection and deck slab construction [4]. 

 

The use of one bearing to support an individual girder at a support optimizes contact between the 

girder and the bearing.  One-bearing systems also tend to be more forgiving of construction 

tolerances, and at skewed supports, one-bearing systems are demonstrably better than two-

bearing systems [4].  A disadvantage of one-bearing systems is that stiff cross frames or 

diaphragms between girders are required to resolve the girder torsion into the bearings. 
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In this example, two bearings are used at each girder support location.  The centerline of each 

bearing is located 28.5 inches from the girder centerline at the support.  Furthermore, the 

bearings at Pier 1 are assumed fixed against translation in both the radial and longitudinal 

directions (Fixed Bearings).  The bearings at the abutments and at Pier 2 are assumed fixed 

against radial movement but free in the longitudinal direction (Guided Bearings).  The 

longitudinal direction at each support varies, as in this case the longitudinal direction is taken 

along a straight line chord line between the fixed support (Pier 1) and each expansion bearing.  

Curved girder bridges do not expand and contract along the girder line, but more so along the 

aforementioned chord lines.  Orientating the bearings in the manner discussed significantly 

reduces the longitudinal stresses in the girders that can occur due to thermal loading.  Therefore, 

due to the bearing orientation and from a separate analysis, the girder demands due to thermal 

loading are determined to be quite small, and are neglected throughout these computations.  In 

all designs, the thermal demands must be considered and properly addressed. 

 

6.1.2 Live Load Analysis 

 

The use of live load distribution factors is typically not appropriate for curved steel tub girder 

bridges, because these structures are best analyzed as a system.  Therefore, influence surfaces are 

most often utilized to more accurately determine the live load force effects in curved girder 

bridges.  Influence surfaces are an extension of influence lines, such that an influence surface not 

only considers the longitudinal position of the live loads, but the transverse position as well. 

 

Influence surfaces provide influence ordinates over the entire deck.  The influence ordinates are 

determined by applying a series of unit vertical loads, one at a time, at selected longitudinal and 

transverse positions on the bridge deck surface.  The magnitude of the response for the unit 

vertical load is the magnitude of the ordinate of the influence surface for the particular response 

at the point on the deck where the load is applied.  The entire influence surface is created by 

curve fitting between calculated ordinates.  Specified live loads are then placed on the surface, 

mathematically, at the critical locations, as allowed by the governing specification, to determine 

the maximum and minimum effects.  The actual live load effect is determined by multiplying the 

live load by the corresponding ordinate.  In the case of an HL-93 truck load, a different ordinate 

will exist for each wheel load.  The total HL-93 truck live load effect is the summation of all the 

wheel loads times their respective ordinates.  For the design lane load, the effect is determined by 

integrating the area of the influence surface under the load and multiplying it by the intensity of 

the load.    

 

In curved girder bridges, influence surfaces are generally needed for all live load force results, 

such as major-axis bending moments, flange lateral bending moments, girder shear, reactions, 

torques, deflections, cross-frame forces, diaphragm forces, lateral bracing forces, etc. 

 

Unless noted otherwise, all live load force effects in this example are computed using influence 

surfaces, developed using the three-dimensional analysis.  The dynamic load allowance (impact) 

is included in the analysis, and is applied to the live-load force effects in accordance with Article 

3.6.2 for strength, service, and fatigue as required.  Multiple presence factors are also included 

within the analysis, and thus are incorporated into the analysis results.   Also, as appropriate, 
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centrifugal force effects are also included in the analysis results, using wheel-load factors as 

shown in Section 5.3 of this design example. 

 

6.2 Analysis Results 

 

This section shows the results from the three-dimensional analysis of the superstructure.  

Analysis results are provided for the moments, shears, and torques for girders G1 and G2.  All 

analysis results are unfactored.  Live load results included multiple presence factors, dynamic 

load allowance (impact), and centrifugal force effects. 

 

Specific analysis results for design Section G2-1, which is located approximately 57 feet from 

the centerline of the bearings at abutment 1, are provided in Table 7.  The analysis results are 

used in the design computations associated with Section G2-1, provided later within this design 

example.  
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Table 1  Girder G1 Unfactored Shears by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 27 114 25 33 139 -24 52 -4

1 15.74 19 80 12 15 115 -29 41 -6

2 31.49 10 45 8 10 94 -35 34 -9

3 47.23 5 23 5 6 78 -41 28 -12

4 62.97 -6 -25 -3 -4 53 -52 22 -16

5 78.71 -11 -44 -6 -7 40 -63 16 -22

6 94.46 -16 -69 -8 -11 31 -83 13 -27

7 110.20 -23 -98 -13 -17 25 -101 10 -34

8 125.94 -28 -116 -18 -23 21 -116 7 -40

9 141.69 -34 -137 -24 -32 19 -127 7 -43

10 157.43 -44 -171 -40 -54 14 -163 4 -53

10 0.00 45 175 41 55 171 -15 58 -4

11 20.66 31 128 23 31 140 -23 44 -6

12 41.33 25 110 16 21 124 -26 39 -7

13 61.99 17 72 10 13 101 -37 31 -12

14 82.65 11 47 5 6 78 -45 27 -15

15 103.31 0 0 0 0 58 -57 22 -22

16 123.98 -11 -47 -5 -6 43 -78 15 -27

17 144.64 -17 -72 -10 -14 36 -101 12 -31

18 165.30 -25 -110 -16 -21 26 -124 6 -39

19 185.96 -31 -127 -23 -31 23 -140 6 -46

20 206.63 -45 -175 -41 -55 14 -166 4 -55

20 0.00 44 171 40 54 167 -15 56 -4

21 15.74 34 137 24 32 128 -19 43 -7

22 31.49 28 116 18 23 116 -21 40 -7

23 47.23 23 98 13 17 101 -25 34 -10

24 62.97 16 69 8 11 83 -31 27 -13

25 78.71 11 44 6 7 64 -38 22 -16

26 94.46 6 25 3 4 51 -52 16 -22

27 110.20 -5 -23 -5 -6 41 -77 12 -28

28 125.94 -10 -45 -8 -10 32 -92 9 -34

29 141.69 -19 -80 -12 -16 27 -113 6 -41

30 157.43 -27 -114 -25 -34 24 -139 4 -52

Fatigue LL+ISpan

Length
10th

Point

Girder G1 Unfactored Shears

Dead Load LL+I

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
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Table 2  Girder G2 Unfactored Shears by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 31 110 39 52 128 -26 61 -12

1 16.26 19 74 17 22 110 -29 52 -12

2 32.51 11 44 11 15 93 -35 44 -12

3 48.77 5 21 6 8 75 -44 36 -12

4 65.03 -7 -26 -3 -5 54 -52 25 -18

5 81.29 -11 -45 -6 -8 40 -67 18 -27

6 97.54 -17 -69 -12 -16 36 -85 13 -34

7 113.80 -24 -97 -17 -23 33 -102 12 -43

8 130.06 -29 -117 -22 -29 26 -114 7 -49

9 146.31 -35 -137 -27 -35 16 -127 4 -53

10 162.57 -46 -185 -41 -55 13 -155 4 -61

10 0.00 47 185 44 58 160 -14 65 -4

11 21.34 32 130 28 37 135 -22 55 -4

12 42.68 26 105 22 29 120 -33 49 -9

13 64.01 17 69 15 20 100 -42 41 -13

14 85.35 12 46 7 10 78 -46 33 -16

15 106.69 0 0 0 0 57 -57 24 -24

16 128.03 -12 -46 -7 -10 46 -78 16 -33

17 149.36 -17 -69 -15 -20 41 -99 13 -41

18 170.70 -26 -105 -22 -29 33 -120 9 -50

19 192.04 -32 -130 -28 -37 22 -135 4 -55

20 213.38 -47 -185 -44 -58 14 -159 4 -64

20 0.00 46 185 41 55 158 -14 64 -4

21 16.26 35 137 27 35 128 -15 53 -4

22 32.51 29 117 22 29 115 -26 49 -7

23 48.77 24 97 17 23 102 -33 41 -12

24 65.03 17 69 12 16 85 -36 33 -13

25 81.29 11 45 6 8 67 -40 27 -18

26 97.54 7 26 3 5 52 -54 18 -25

27 113.80 -5 -21 -6 -8 44 -75 12 -36

28 130.06 -11 -44 -11 -15 34 -93 12 -44

29 146.31 -19 -74 -17 -22 28 -111 12 -52

30 162.57 -31 -110 -39 -52 26 -129 12 -61

Girder G2 Unfactored Shears

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
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Table 3  Girder G1 Unfactored Major-Axis Bending Moments by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 15.74 521 2191 340 450 2472 -469 748 -98

2 31.49 882 3666 592 785 4330 -938 1252 -196

3 47.23 1049 4321 724 960 5412 -1408 1477 -293

4 62.97 1047 4320 734 972 5863 -1878 1545 -385

5 78.71 851 3503 620 821 5777 -2338 1502 -471

6 94.46 493 2043 387 514 5189 -2795 1367 -553

7 110.20 -75 -315 36 47 4109 -3915 1108 -667

8 125.94 -837 -3461 -434 -576 2602 -4547 714 -813

9 141.69 -1781 -7206 -1014 -1343 1252 -5559 270 -991

10 157.43 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

10 0.00 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

11 20.66 -1422 -5845 -802 -1062 1310 -4411 363 -810

12 41.33 -326 -1516 -95 -125 2993 -3033 924 -618

13 61.99 493 1881 425 563 4784 -2275 1324 -470

14 82.65 977 3900 733 972 5926 -2008 1556 -367

15 103.31 1118 4442 836 1108 6304 -1749 1616 -279

16 123.98 976 3900 733 972 5928 -2013 1556 -369

17 144.64 492 1880 424 562 4775 -2279 1326 -471

18 165.30 -327 -1519 -95 -127 3000 -3021 923 -616

19 185.96 -1422 -5848 -803 -1064 1315 -4421 381 -810

20 206.63 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

20 0.00 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

21 15.74 -1780 -7203 -1014 -1345 1248 -5556 270 -997

22 31.49 -837 -3459 -436 -577 2591 -4532 714 -810

23 47.23 -74 -312 34 46 4099 -3900 1107 -665

24 62.97 493 2044 386 511 5181 -2783 1367 -551

25 78.71 851 3504 618 819 5769 -2328 1502 -462

26 94.46 1047 4320 732 971 5855 -1868 1544 -378

27 110.20 1048 4321 723 958 5405 -1402 1477 -286

28 125.94 882 3666 591 784 4326 -993 1252 -191

29 141.69 521 2189 339 449 2470 -466 748 -96

30 157.43 0 0 0 0 0 0 0 0

Girder G1 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 4  Girder G2 Unfactored Major-Axis Bending Moments by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 16.26 555 2268 351 465 2606 -484 796 -95

2 32.51 938 3868 610 808 4559 -967 1330 -191

3 48.77 1116 4632 742 984 5687 -1446 1564 -289

4 65.03 1115 4633 745 988 6152 -1931 1630 -390

5 81.29 905 3780 622 824 6059 -2416 1579 -498

6 97.54 525 2207 373 494 5434 -2907 1427 -616

7 113.80 -79 -256 -1 -1 4308 -4097 1148 -757

8 130.06 -892 -3579 -501 -665 2751 -4768 750 -917

9 146.31 -1896 -7599 -1122 -1488 1305 -5836 287 -1110

10 162.57 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

10 0.00 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

11 21.34 -1513 -6169 -906 -1201 1401 -4629 388 -902

12 42.68 -348 -1473 -160 -211 3176 -3197 933 -692

13 64.01 525 2077 384 509 5018 -2366 1345 -527

14 85.35 1040 4196 704 934 6205 -2070 1587 -393

15 106.69 1190 4826 813 1077 6598 -1786 1655 -277

16 128.03 1039 4195 704 934 6204 -2065 1585 -391

17 149.36 525 2075 384 509 5001 -2355 1344 -524

18 170.70 -348 -1476 -159 -211 3166 -3165 932 -690

19 192.04 -1514 -6173 -906 -1200 1393 -4627 399 -901

20 213.38 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

20 0.00 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

21 16.26 -1895 -7595 -1121 -1485 1312 -5843 289 -1113

22 32.51 -891 -3577 -500 -662 2762 -4778 751 -923

23 48.77 -79 -253 1 2 4320 -4106 1151 -760

24 65.03 525 2208 375 496 5445 -2917 1430 -621

25 81.29 906 3781 624 827 6068 -2424 1581 -495

26 97.54 1115 4634 747 990 6160 -1936 1631 -387

27 113.80 1116 4632 743 986 5689 -1451 1564 -287

28 130.06 938 3867 611 810 4560 -971 1330 -190

29 146.31 555 2266 351 465 2607 -487 797 -95

30 162.57 0 0 0 0 0 0 0 0

Girder G2 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 5  Girder G1 Unfactored Torques by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 42 286 -62 -83 660 -398

1 15.74 82 398 -54 -71 775 -448

2 31.49 34 189 -40 -53 756 -482

3 47.23 30 153 -40 -52 597 -389

4 62.97 -1 9 -23 -31 389 -307

5 78.71 -29 -125 -13 -17 309 -354

6 94.46 -33 -158 0 0 360 -479

7 110.20 -54 -262 21 28 462 -636

8 125.94 -25 -165 46 62 569 -766

9 141.69 -10 -135 83 110 668 -866

10 157.43 -22 -231 126 168 1049 -922

10 0.00 36 294 -144 -191 1049 -922

11 20.66 4 105 -89 -117 995 -702

12 41.33 60 309 -52 -68 919 -598

13 61.99 39 205 -22 -30 716 -464

14 82.65 61 261 -9 -11 555 -383

15 103.31 0 0 0 0 446 -430

16 123.98 -64 -261 9 11 413 -540

17 144.64 -39 -205 22 29 500 -724

18 165.30 -60 -309 52 68 625 -906

19 185.96 -4 -105 89 117 713 -991

20 206.63 -36 -294 144 190 928 -1046

20 0.00 22 231 -127 -169 928 -1046

21 15.74 10 134 -85 -112 874 -657

22 31.49 25 166 -47 -62 770 -549

23 47.23 54 262 -22 -29 640 -434

24 62.97 33 158 0 -1 482 -319

25 78.71 30 125 12 17 375 -281

26 94.46 1 -10 23 30 346 -378

27 110.20 -30 -153 39 51 434 -591

28 125.94 -34 -190 39 52 512 -751

29 141.69 -82 -398 57 75 503 -772

30 157.43 -42 -285 75 99 399 -662

Girder G1 Unfactored Torques

10th

Point

Span

Length

Dead Load LL+I
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Table 6  Girder G2 Unfactored Torques by Tenth Point 

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 42 286 -62 -83 660 -398

1 15.74 82 398 -54 -71 775 -448

2 31.49 34 189 -40 -53 756 -482

3 47.23 30 153 -40 -52 597 -389

4 62.97 -1 9 -23 -31 389 -307

5 78.71 -29 -125 -13 -17 309 -354

6 94.46 -33 -158 0 0 360 -479

7 110.20 -54 -262 21 28 462 -636

8 125.94 -25 -165 46 62 569 -766

9 141.69 -10 -135 83 110 668 -866

10 157.43 -22 -231 126 168 1049 -922

10 0.00 36 294 -144 -191 1049 -922

11 20.66 4 105 -89 -117 995 -702

12 41.33 60 309 -52 -68 919 -598

13 61.99 39 205 -22 -30 716 -464

14 82.65 61 261 -9 -11 555 -383

15 103.31 0 0 0 0 446 -430

16 123.98 -64 -261 9 11 413 -540

17 144.64 -39 -205 22 29 500 -724

18 165.30 -60 -309 52 68 625 -906

19 185.96 -4 -105 89 117 713 -991

20 206.63 -36 -294 144 190 928 -1046

20 0.00 22 231 -127 -169 928 -1046

21 15.74 10 134 -83 -111 874 -657

22 31.49 25 166 -47 -62 770 -549

23 47.23 54 262 -22 -29 640 -434

24 62.97 33 158 0 -1 482 -319

25 78.71 30 125 12 17 375 -281

26 94.46 1 -10 23 30 346 -378

27 110.20 -30 -153 39 51 434 -591

28 125.94 -34 -190 39 52 512 -751

29 141.69 -82 -398 57 75 503 -772

30 157.43 -42 -285 75 99 399 -662

Girder G1 Unfactored Torques

10th

Point

Span

Length

Dead Load LL+I
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Table 7  Section G2-1 Unfactored Major-Axis Bending Moments and Torques  

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg. Pos. Neg.

Moment (kip-ft) 1144 4747 2979 765 1006 5920 -1689 -290 1525

Torque (kip-ft) 59 205 464 41 54 525 -409 -113 232

Demand
Dead Load LL+I Fatigue LL+I

Unfactored Demands at Section G2-1 (10th Point = 3.5)
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7.0 DESIGN 

 

Sample design calculations at selected critical locations of Girder G2 are provided within this 

section.  The calculations are intended to illustrate the application of some of the more 

significant provisions of the AASHTO LRFD (7
th

 Edition, 2014).  As such, complete calculations 

for each girder section and all bridge components are not shown.  Two critical girder section 

checks are provided: Section G2-1 represents a girder section checked for positive moment, and 

Section G2-2 represents a girder section at an interior pier and the maximum negative moment 

location.  The sample girder design calculations illustrate provisions that need to be checked at 

the Strength, Service, Fatigue, and Constructibility limit states.  Also, sample calculations for 

determining tub girder distortional stresses based on the beam-on-elastic-foundation analogy are 

provided. 

 

Sample design calculations are also provided for the longitudinal bottom flange stiffener design, 

internal full-depth diaphragm design, bearing stiffener design, top flange lateral bracing member 

design, and a bolted field splice design.  The sample design calculations make use of moments, 

shears, and torques provided in tables shown in Section 6.2 of this design example, and section 

properties that are computed in the sections that follow.  In the calculations of major-axis 

bending stress throughout the sample calculations, compressive stresses are always shown as 

negative values and tensile stresses are always shown as positive values.   

 

7.1 Girder Section Proportioning 

 

Figure 9 illustrates the Girder G2 elevation, showing the flange and web sizes employed in this 

design example.  The same flange and web sizes of Girder G2 are used on Girder G1, but with 

plate lengths radially proportional to the plate lengths for Girder G2.  
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Figure 9  Girder G2 elevation 
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7.1.1 Girder Web Depth 

 

Proper proportioning of tub girders involves a study of various girder depths versus girder weight 

to arrive at the least weight solution that meets all performance and handling requirements. The 

overall weight of the tub girder can vary dramatically based on web depth.  Therefore, selection 

of the proper girder depth is an extremely important consideration affecting the economy of steel 

girder design. The NSBA Publication, Practical Steel Tub Girder Design [3] points out that a 

traditional rule of thumb for steel tub girder bridge depths is L/25, however designers should not 

be reluctant to exceed this ratio.  Tangent steel tub girders have approached L/35 while meeting 

all code requirements for strength and deflection.  Furthermore, tub girders are generally stiffer 

than I-girders because an individual tub nearly acts as two I-girders for major-axis bending.  For 

torsion, an individual tub girder is significantly stiffer than two-I-girders. 

 

Article 2.5.2.6.3 provides suggested minimum span-to-depth ratios for I-girders, but does not 

specifically address tub girder sections.  The suggested minimum total depth of a composite I-

girder, in a continuous span, is given as 0.032L, where L is the span length in feet.  This criterion 

may be applied to determine a starting depth of the tub girder for the depth studies.  The length 

of the center span of the outside girder, Girder G2, is 213.38 feet (measured along the centerline 

of the tub section), which is the longest effective span in this design example.  Therefore the 

suggested minimum depth of the composite section is: 

 

 0.032(213.38) = 6.828 ft = 81.9 in. 

 

Considering that 81.9 inches is the suggested minimum depth of the composite section including 

the depth of the concrete deck, a vertical web depth of 78.0 inches is chosen in this design 

example. 

 

Tub girders typically employ inclined webs, as they are advantageous in reducing the width of 

the bottom flange.  Article 6.11.2.1 specifies that the web inclination should not exceed 1:4 

(horizontal:vertical).  Because progressively deeper webs may result in a narrower and 

potentially thicker bottom flange plate (at location of maximum flexure), it is generally necessary 

for the Engineer to explore a wide range of web depths and web spacing options in conjunction 

with bottom flange requirements to determine the optimal solution. 

 

The maximum recommended web inclination of 1:4 is used for this design example, so as to 

minimize the bottom flange width.  Based on the previously mentioned web depth study, a 

vertical web depth of 78.0 inches is selected, resulting in a distance of 81 inches between the 

centerline of the webs at the bottom flange.  The actual bottom flange width is 83 inches in order 

to provide a 1.0-inch flange extension on the outside of each web, which permits welding of the 

webs to the bottom flange.  However, it should be noted, according to the AASHTO/NSBA Steel 

Bridge Collaboration Document: Guidelines for Design Details [5], most fabricators prefer a 

bottom flange extension of 1.5 inches, and 1.0 inch is the minimum. 
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7.1.2 Cross-section Proportions 

 

Proportion limits for webs of tub girders are specified in Article 6.11.2.1.  Provisions for webs 

with and without longitudinal stiffeners are presented.  For this example a longitudinally 

stiffened web is not anticipated.  The web plate must be proportioned such that the web plate 

thickness (tw) meets the requirement: 

 

 150
t

D

w

  Eq. (6.11.2.1.2-1) 

 

where D is the distance along the web.  For inclined webs, Article 6.11.2.1.1 states that the 

distance along the web is to be used for all design checks.  The web thickness used along the 

entire length of both girders in this design example is 0.5625 inches.  Determine the web depth 

along the incline: 

 

in. 80.40
4.0

4.123
78D 








  

 

Checking Eq. (6.11.2.1.2-1): 

 

 1509.142
5625.0

40.80

t

D

w

  OK 

 

Cross-section proportion limits for top flanges of tub girders are specified in Article 6.11.2.2.  

The smallest top flange employed in this design example is 1.0 in. x 16.0 in.  The minimum 

width of flanges is specified as: 

 

 in. 13.4
6

80.40

6

D
bf   Eq. (6.11.2.2-2) 

 

Therefore, the minimum top flange width of 16.0 in. satisfies the requirements of Eq. (6.11.2.2-

2).  The minimum thickness of the top flange must satisfy the following two provisions: 

 

 0.12
t2

b

f

f   Eq. (6.11.2.2-1) 

 

 0.120.8
)0.1(2

0.16

t2

b

f

f   OK 

 

and, 

 

 wf  t1.1t   Eq. (6.11.2.2-3) 
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 in. 0.62)1.1(0.5625 t1.1in. 1.0t wf   OK 

 

Although not required in this design example, it should be noted that the AASHTO/NSBA Steel 

Bridge Collaboration document Guidelines for Design for Constructibility [7] recommends a 

minimum flange thickness of 0.75 inches to enhance girder stability during handling and 

erection.   

 

This example utilizes the provisions of the AASHTO LRFD (7
th

 Edition, 2014) to size the bottom 

flanges, which impose no limitations with regard to the b/t ratio of bottom flanges in tension.  

However, the design engineer should consider current industry practice regarding sizing the 

bottom flange of tub girders in positive moment regions. For positive moment regions, past and 

current literature has suggested a lower bound limit for the bottom flange thickness.  These 

“rules of thumb” have suggested that a bottom flange in tension have a maximum b/t ratio of 120 

or an even more restrictive ratio of 80.  These limits are intended to address several fabrication 

concerns, including waviness and warping effects during welding of the bottom flange to the 

webs.  Additional discussion concerning this issue can be found in the NSBA publication 

Practical Steel Tub Girder Design [4].  

 

Furthermore, the designer should be aware that it is possible that the bottom flange in tension in 

the final condition may be in compression during lifting of the tub girder during erection, 

possibly causing buckling of the slender bottom flange.  Slenderness limits for the bottom 

tension flange have also been suggested to limit local vibrations, especially in very wide flanges 

that do not utilize any stiffening elements.   

 

The designer should consult with fabricators if it is determined that a bottom flange thickness 

that does not satisfy these previously discussed rules of thumb will be utilized in the final design 

of the structure.  It should be verified that a tub girder with the selected bottom flange thickness 

can be fabricated without causing handling and distortion concerns.  For this particular example, 

tension flange thicknesses that do not satisfy the suggested maximum b/t ratio of 120 are utilized 

(maximum b/t = 81/0.625 = 129.6), as they are allowed by AASHTO LRFD (7
th

 Edition, 2014). 

 

7.2 Section Properties 

 

The calculation of the section properties for Sections G2-1 and G2-2 is illustrated below.  In 

computing the composite section properties, the structural slab thickness, or total thickness 

minus the thickness of the integral wearing surface, should be used.  However, in the case of this 

design example, there is no integral wearing surface assumed, therefore the total structural 

thickness of the deck slab is 9.50 in. 

 

For all section property calculations, the haunch depth of 4.00 in. is considered in computing the 

section properties, but the area of the haunch is not included.  Since the actual depth of the 

haunch concrete may vary from its theoretical value to account for construction tolerances, some 

designers ignore the haunch concrete depth in all calculations.  For composite section properties 

including only longitudinal reinforcement, a haunch depth is considered when determining the 

vertical position of the reinforcement relative to the steel girder.  The longitudinal reinforcement 
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steel area is assumed to be equal to 20.0 in.
2
 per girder, and is assumed to be placed at the mid-

depth of the effective structural deck thickness. 

 

The section properties also include the longitudinal component of the top flange lateral bracing 

area, the longitudinal bottom flange stiffener (where present), and the 1 in. bottom flange 

extensions beyond the webs.  A single top flange lateral bracing member of 8.0 in.
2
 placed at an 

angle of 30 degrees from the girder tangent is assumed in this design example. 

 

The composite section must consist of the steel section and the transformed area of the effective 

width of the concrete deck.  Therefore, compute the modular ratio, n (Article 6.10.1.1.1b):       

  

 
cE

E
n   Eq. (6.10.1.1.1b-1) 

 

where Ec is the modulus of elasticity of the concrete determined as specified in Article 5.4.2.4.  

A unit weight of 0.150 kcf is used for the concrete in the calculation of the modular ratio. 

 

 c

1.5

c1c f' wK 33,000E   Eq. (5.4.2.4-1) 

  

 ksi 3,8344.0(0.150) (1.0) 33,000E 1.5

c   

 

 7.56
3,834

29,000
n   

 

Even though Article C6.10.1.1.1b permits n to be taken as 8 for concrete with f′c equal to 4.0 ksi, 

n = 7.56 will be used in all subsequent computations in this design example. 

 

7.2.1 Section G2-1: Span 1 Positive Moment Section Properties 

 

Section G2-1 is located in Span 1, approximately 57 feet from the centerline of the bearing at 

abutment 1.  The cross section for Section G2-1 is shown in Figure 10.  For this section, the 

longitudinal reinforcement is conservatively neglected in computing the composite section 

properties as is typically assumed in design. 
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Figure 10  Sketch of Tub-Girder Cross–Section at Section G2-1 

 

7.2.1.1 Effective Width of Concrete Deck 

 

As specified in Article 6.10.1.1.1e, the effective flange width is to be determined as specified in 

Article 4.6.2.6.  According to Article 4.6.2.6, the deck slab effective width may be taken as the 

tributary width perpendicular to the axis of the member for determining cross-section stiffnesses 

for analysis and for determining flexural resistances.  In a typical two tub girder cross-section, 

the tributary width of the deck slab over each girder is taken as the distance between the two 

webs of the girder, plus half the distance from one web to the adjacent web of the adjacent girder 

plus the full overhang width.  Therefore, the deck slab effective width, beff, for Girder G2 is: 

 

 in. 243ft 20.25
2

12.50
  10.00 4.00beff   

 

7.2.1.2 Elastic Section Properties: Section G2-1 

 

For tub sections with inclined webs, the area of the inclined webs should be used in computing 

all section properties.  Also, as shown in Figure 11, the moment of inertia of a single inclined 

web, Iow, with respect to a horizontal axis at mid-depth if the web is computed as: 
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 w2

2

ow I 
1S

S
I


  

 

where: S = web slope with respect to the horizontal (equal to 4.00 in this example) 

 Iw = moment of inertia of each inclined web with respect to an axis normal to the web 
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Figure 11  Moment of Inertia of an Inclined Web 

 

In the calculations of the section properties that follow in Table 8 to Table 10, d is measured 

vertically from a horizontal axis through the mid-depth of the web to the centroid of each 

element of the tub girder.   
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Table 8  Section G2-1: Steel Only Section Properties 

 

 

Table 9  Section G2-1: 3n=22.68 Composite Section Properties 
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Table 10  Section G2-1: n=7.56 Composite Section Properties 

 

 

7.2.1.3 Plastic Moment Neutral Axis: Section G2-1 

 

As specified in Article 6.11.6.2.2 for sections in positive flexure, the ductility requirements of 

Article 6.10.7.3 must be satisfied for compact and noncompact sections to protect the concrete 

deck from premature crushing.  This requires the computation of the plastic neutral axis, in 

accordance with Article D6.1.  The longitudinal deck reinforcement is conservatively neglected.  

The location of the plastic neutral axis for the entire tub girder is computed as follows: 

 

 Pt = Fyt bt tt  = (50)(83.00)(0.625)  = 2,594 kips 

 Pw = 2 Fyw D tw = (2)(50)(80.40)(0.5625) = 4,523 kips 

 Pc = 2 Fyc bc tc  = (2)(50)(16.00)(1.00)  = 1,600 kips 

 Ps = 0.85 f’c beff ts = (0.85)(4.0)(243)(9.5) = 7,849 kips 

 Prb = Prt = 0 kips 

 

 Pt + Pw + Pc > Ps + Prb + Prt 

 2,594 + 4,523 + 1,600 = 8,717 kips  >  7,849 kips  

 

Therefore, the plastic neutral axis (PNA) is in the top flange, according to Case II of Table D6.1-

1.  Compute the PNA in accordance with Case II: 

 

 






















 1

1,600

0 - 0 - 849,7594,2523,4

2

1.00
1

P

PPPPP

2

t
Y

c

rbrtstwc  

 

location)(PNA  flange  top theof  top thefrom downward in. 0.27Y   

 

7.2.2 Section G2-2: Support 2 Negative Moment Section Properties 

 

Section G2-2 is located at Support 2, and is as shown in Figure 12.  The effective width of 

concrete deck is the same for Section G2-2 as calculated for Section G2-1, beff = 243.0 in. 
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Figure 12  Sketch of Tub-Girder Cross–Section at Section G2-2 

 

7.2.2.1 Elastic Section Properties: Section G2-2 

 

Furthermore, for members with shear connectors provided throughout their entire length that also 

satisfy the provisions of Article 6.10.1.7, Articles 6.6.1.2.1 and 6.10.4.2.1 permit the concrete 

deck to also be considered effective for negative flexure when computing stress ranges and 

flexural stresses acting on the composite section at all sections in the member at the fatigue and 

service limit states, respectively.  Therefore, section properties for the short-term and long-term 

composite section, including the concrete deck but neglecting the longitudinal reinforcement, are 

also determined for later use in the calculations of Section G2-2 at these limit states. 

 

Although not required by the AASHTO LRFD (7
th

 Edition, 2014), for stress calculations 

involving the application of long-term loads to the composite section in regions of negative 

flexure in this example, the area of the longitudinal reinforcement is conservatively adjusted for 

the effects of concrete creep by dividing the area by 3 (i.e. 20.00 in.
2
/3 = 6.67 in.

2
).  The concrete 

is assumed to transfer the force from the longitudinal deck reinforcement to the rest of the cross-

section and concrete creep acts to reduce that force over time. 

 

As shown in Figure 10, a single WT 8x28.5 is utilized as a bottom flange longitudinal stiffener 

with the stem welded to the bottom flange, and is placed at the centerline of the bottom flange.  

The WT 8x28.5 is considered in the section property computations. 
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In the calculation of the section properties that follow in Table 11 to Table 15, d is measured 

vertically from a horizontal axis through the mid-depth of the web to the centroid of each 

element of the tub girder.  

  

Table 11  Section G2-2: Steel Only Section Properties 

 

 

Table 12  Section G2-2: 3n=22.68 Composite Section Properties with Transformed Deck 
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Table 13  Section G2-2: n=7.56 Composite Section Properties with Transformed Deck 

 

Table 14  Section G2-2: 3n Composite Section Properties with Longitudinal Steel 

Reinforcement 

 

Table 15  Section G2-2: n Composite Section Properties with Longitudinal Steel 

Reinforcement 
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7.2.3 Check of Minimum Negative Flexure Concrete Deck Reinforcement (Article 6.10.1.7) 

 

To control concrete deck cracking in regions of negative flexure, Article 6.10.1.7 specifies that 

the total cross-sectional area of the longitudinal reinforcement must not be less than 1 percent of 

the total cross-sectional area of the deck.  The minimum longitudinal reinforcement must be 

provided wherever the longitudinal tensile stress in the concrete deck due to either the factored 

construction loads or Load Combination Service II exceeds fr.  is to be taken as 0.9 and fr is to 

be taken as the modulus of rupture of the concrete determined as follows: 

 

 For normal weight concrete: '

cr f24.0f   

 For lightweight concrete: fr is calculated as specified in Article 5.4.2.6. 

 

It is further specified that the reinforcement is to have a specified minimum yield strength not 

less than 60 ksi and a size that should not exceed No. 6 bars. The reinforcement should be placed 

in two layers uniformly distributed across the deck width, and two-thirds should be placed in the 

top layer.  The individual bars should be spaced at intervals not exceeding 12 inches.   

 

Article 6.10.1.1.1c states that for calculating stresses in composite sections subjected to negative 

flexure at the strength limit state, the composite section for both short-term and long-term 

moments is to consist of the steel section and the longitudinal reinforcement within the effective 

width of the concrete deck.  Referring to the cross-section shown in Figure 2: 

 

overhang) ofportion r (triangula  deck) thick 9.5" of width (entireAdeck   

 

  22

deck in.4,777ft33.17
12

216.0
4.0

12

0.4

2

1
240.5

12

9.5
A 

























     

 

      
2in.47.77)0.01(4,777   

 

    in.in.0.098ftin.1.18
40.5

47.77 22   

 

        girder  tubper in.23.810)0.098(243. 2  

 

Therefore, the assumption of 20.00 in.
2
 for the longitudinal deck reinforcement used in the 

calculation of the section properties for Section G2-1 is conservative and is left as shown in 

Table 14 and Table 15, as the longitudinal deck reinforcement to be used is more than that 

assumed in the section property calculations.  In the actual deck, the longitudinal reinforcement 

should have a minimum cross-sectional area of 23.81 in.
2
 per tub girder.  If the reinforcement is 

detailed, #6 bars at 6 inches are placed in the top layer, and in the bottom layer use #4 bars at 6 

inches.  Therefore, the total area of deck reinforcement steel in the given effective width of 

concrete deck is: 
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  22

S in. 23.81in. 92.52
12

243.0
0.20  0.200.440.44A 








  

Also, approximately two-thirds of the reinforcement is in the top layer: 
3

2
69.0

28.1

44.044.0



 

 

7.3 Girder Check: Section G2-1, Constructibility (Article 6.11.3) 

 
Article 6.11.3 directs the engineer to Article 6.10.3 for discussion regarding the constructibility 
checks of tub girders.  For critical stages of construction, the provisions of Articles 6.10.3.2.1 
through 6.10.3.2.3 are to be applied to the top flanges of the tub girder.  The noncomposite 
bottom tub flange in compression or tension is to satisfy the requirements specified in Article 
6.11.3.2.  Web shear is to be checked in accordance with Article 6.10.3.3, with the shear to be 
taken along the slope of the web in accordance with the provisions of Article 6.11.6. 

As specified in Article 6.10.3.4, sections in positive flexure that are composite in the final 

condition, but noncomposite during construction, are to be investigated during the various stages 

of deck placement.  The effects of forces from deck overhang brackets acting on the fascia 

girders are also to be considered.  Wind load effects on the noncomposite structure prior to and 

during casting are also an important consideration during construction.  The presence of 

construction equipment may also need to be considered.  Lastly, the potential for uplift at 

bearings should be investigated at each critical construction stage.  For this design example, the 

effects of wind load on the structure and the presence of construction equipment are not 

considered. 

 

Calculate the maximum flexural stresses in the flanges of the steel section due to the factored 

loads resulting from the application of steel self-weight and Cast #1 of the deck placement 

sequence.  Cast #1 yields the maximum positive moment for the noncomposite Section G2-1.  As 

specified in Article 6.10.1.6, for design checks where the flexural resistance is based on lateral 

torsional buckling, fbu is to be determined as the largest value of the compressive stress 

throughout the unbraced length in the flange under consideration, calculated without 

consideration of flange lateral bending.  For design checks where the flexural resistance is based 

on yielding, flange local buckling or web bend-buckling, fbu may be determined as the stress at 

the section under consideration.  From Figure 1, brace points adjacent to Section G2-2 are 

located at intervals of approximately 16.3 feet, and the largest stress occurs within this unbraced 

length.   

 

In accordance with Article 3.4.2.1, when investigating Strength I, III, and V during construction, 

load factors for the weight of the structure and appurtenances, DC and DW, are not to be taken to 

be less than 1.25.  Also, as discussed previously, the  factor is taken equal to 1.0 in this 

example.  As shown in Table 7 the unfactored moments due to steel self-weight and Cast #1 are 

1,144 k-ft and 2,979 k-ft, respectively.  Therefore, 

 

For Construction Strength I: 

 

 General: 
nc

DC

bu
S

M  
f
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 Top Flange:  ksi27.14
4,334

2,979)(12)  1,1441.0(1.25)(
f bu 


  

 

 Bot. Flange: ksi30.21
5,029

2,979)(12)  1,1441.0(1.25)(
f bu 


  

 

As mentioned previously in Section 5.4, in the interest of brevity, the special load combination specified 

in Article 3.4.2.1 for DC loads and construction loads, C, applied to the fully erected steelwork during 

construction, i.e., 1.4(DC + C), is not considered herein.  
 

7.3.1 Deck Overhang Bracket Load 

 

During construction, the weight of the deck overhang wet concrete is resisted by the deck 

overhang brackets.  Other loads supported by the overhang brackets during construction include 

the formwork, screed rail, railing, worker walkway, and possibly the deck finishing machine.   

 

The deck overhang construction loads are typically applied to the non-composite section, and 

removed once the concrete deck has become composite with the steel girders.  The deck 

overhang bracket imparts a lateral force on the top and bottom flanges, resulting in lateral 

bending of the flanges.  The lateral bending of the top flange that must be considered as part of 

the constructibility check, however in a tub girder bridge, the flange lateral bending of the 

bottom flange is typically ignored due to the large section modulus of the bottom flange in the 

lateral direction.  Also, it should be noted that if the bottom of the bracket does not bear on the 

web near the junction of the web and bottom flange, additional support and/or stiffening of the 

web may be warranted. 

 

Since G2 is a fascia girder, one-half of the deck overhang weight is assumed to be carried by the 

girder and one-half is assumed placed on the overhang brackets, as shown in Figure 13. 
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Figure 13  Deck Overhang Bracket Loading 

 

The deck overhang bracket loads are assumed to be applied uniformly to the top flange, even 

though the brackets are actually spaced at approximately 3 feet along the length of the girder. 

 

The unbraced length of the top flange is approximately 16.3 ft in Span 1.  The deck thickness in 

the overhang area is assumed to be 10 inches, and the weight of the deck finishing machine is not 

considered in these calculations.  Therefore, the vertical load on the deck overhang brackets is 

computed as: 

 

 Deck Overhang:    150
12

10
0.4

2

1
















 = 250 lbs/ft 

 

 Deck Forms + Screed Rail  = 224 lbs/ft  (assumed) 

 

 Total Uniform Load on Brackets = 474 lbs/ft 

 

 

According to Article 3.4.2.1, the load factor for construction loads is to be taken as 1.50 for the 

Strength I load combination.  The factored Strength I lateral force on the top flange is therefore 

computed as: 

 

 







  1.49

5.67

0.78
tan 1  

 

kip/ft 0.562lb/ft  625
)tan(49.1

1.50(224)1.25(250)
F 
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The flange lateral bending moment on the exterior web top flange due to the deck overhang 

bracket is computed.  The flange lateral moment at the brace points due to the overhang forces is 

negative in the top flange of Girder G2 on the outside of the curve in regions of positive flexure 

because the stress due to the lateral moment is compressive on the convex side of the flange at 

the brace points.  The opposite would be true on the convex side of the Girder G1 top flange on 

the inside of the curve in regions of positive flexure at the brace points.  In the absence of a more 

refined analysis, the equations given in Article C6.10.3.4 may be used to estimate the maximum 

flange lateral bending moments in the discretely braced compression flange due to the lateral 

bracket forces.  Assuming the flange is continuous with the adjacent unbraced lengths and that 

the adjacent unbraced lengths are approximately equal, the factored Strength I lateral bending 

moment due to a statically equivalent uniformly distributed lateral bracket force may be 

estimated as: 

 

 
ft-kip 4.21

12

216.30.562

12

2
b

L F
M 

















    Eq. (C6.10.3.4-2) 

 

7.3.2 Flange Lateral Bending Due to Horizontal Component of Web Shear 

 

In addition to the lateral bending moment due to the overhang brackets, the inclined webs of the 

tub girder cause a lateral force on the top flanges.  However, in this example this force and 

subsequent lateral bending effects are relatively small and are ignored in these computations.   

 

7.3.3 Flange Lateral Bending Due to Curvature 

 

Another source of lateral bending is due to curvature, which can either be taken from the analysis 

results, or estimated by the approximate V-load equation given in Article C4.6.1.2.4b.  The V-

load equation assumes the presence of a cross frame at the point under investigation and a 

constant major-axis moment over the distance between the brace points.  Although the V-load 

equation is intended for application to I-girders and is not theoretically pure for tub girders or at 

locations in-between brace points, it may conservatively be used to estimate the flange lateral 

bending moments at the cross-frames in the top flanges of a tub. 

 

The top flange size is constant between brace points in this region under investigation.  In 

positive moment regions, the largest value of the major-axis bending stress (fbu) may not 

necessarily be at either brace point.  Generally in positive moment regions, fbu will not be 

significantly larger than the value at adjacent brace points, which is the case in this example.  

Therefore, the computed value of fbu at Section G2-1 and the lateral bending moment at the brace 

points are conservatively combined for this constructibility check.   

 

For this example, and illustration purposes, the V-load equation is used to compute the flange 

lateral bending moment due to curvature.  For a single tub girder flange, consider only one-half 

of the girder major-axis moment due to steel self-weight and Cast #1 of the deck placement 

sequence.  
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tf-kip 2,062

2

2,979 1,144
M 


   

 

  
   

ft-kip 9.8
6.5716.2512

216.32,062

D R N

2 M
LATM 

















  Eq. (C4.6.1.2.4b-1) 

 

where: 

 

 MLAT  = flange lateral bending moment (kip-ft) 

 M = major-axis bending moment (kip-ft) 

 ℓ = unbraced length (ft) 

 N = a constant taken as 10 or 12 in past practice; 12 is recommended for use herein 

 R = girder radius (ft) 

 D = web depth (ft) 

 

The flange lateral moment at the brace points due to curvature is negative when the top flanges 

are subjected to compression because the stress due to the lateral moment is in compression on 

the convex side of the flange at the brace points.  The opposite is true whenever the top flanges 

are subjected to tension.  Thus, the flange lateral moments due to the overhang loads in the top 

flange of Girder G2 on the outside of the curve in regions of positive flexure are additive to those 

due to curvature (see below); the opposite is true in the top flange of Girder G1 on the inside of 

the curve in regions of positive flexure. The total factored Strength I lateral moment and stress in 

the top flange of Girder G2, including the factored lateral moment from the overhang bracket is: 

 

   tf-kip 7.24)4.12()8.9(25.1TOT_LATM   

 

 ksi.956-
62(1.00)(16)

24.7(12)-

S

LAT_TOTM
f 


  

 

It should be noted that another significant source of flange lateral bending results from forces 

that develop in single-diagonal top flange bracing members resulting from major-axis bending of 

the tub girder.  This effect is recognized in flange lateral moments that are taken directly from a 

finite element analysis.  In the absence of a refined analysis, equations have been developed to 

evaluate bracing member forces and the forces imparted on the top flange in tub girders due to 

major-axis bending [8 and 9].  The flange lateral bending due to the forces in the top lateral 

bracing is not considered in these computations. 

 

7.3.4 Top Flange Lateral Bending Amplification 

 

According to Article 6.10.1.6, lateral bending stresses determined from a first-order analysis may 

be used in discretely braced compression flanges for which: 
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ycbu

bb

pb
Ff

RC
1.2LL          Eq. (6.10.1.6-2) 

 

Lp is the limiting unbraced length specified in Article 6.10.8.2.3 determined as: 

 

 
yc

tp
F

E
r0.1L          Eq. (6.10.8.2.3-4) 

 

where rt is the effective radius of gyration for lateral torsional buckling specified in Article 

6.10.8.2.3 determined as: 

 

 















fcfc

wc

fc

t

tb

tD

3

1
112

b
r        Eq. (6.10.8.2.3-9) 

 

For the steel section, the depth of the web in compression in the elastic range, Dc, at Section G2-

1 is computed along the web (not vertical) as follows: 

 

 Note that for the steel section only: dTOP OF STEEL = 42.77 in.  

 

 
2

2

fSTEEL OF TOPc
S

1S
 )t(dD


  

 

 in. 43.06
4

14
 1.00)(42.77D

2

2

c 


  

 

It should be noted that values of Dc and D are taken as distances along the web, in accordance 

with Article 6.11.2.1.1.  Therefore, 

 

 in.77.3

16(1.00)

25)43.06(0.56

3

1
112

16
tr 











  

 

 ft57.7
50

29,000

12

1.0(3.77)
Lp   

 

Cb is the moment gradient modifier specified in Article 6.10.8.2.3 and may conservatively be 

taken equal to 1.0 in regions of positive flexure.  According to Article 6.10.1.10.2, the web load-

shedding factor, Rb, is to be taken equal to 1.0 when checking constructibility.  Finally, fbu is the 

largest value of the compressive stress due to the factored loads throughout the unbraced length 
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in the flange under consideration, calculated without consideration of flange lateral bending.  In 

this case, use fbu =   -14.27 ksi, as computed earlier for the Construction Strength I load 

combination.  Therefore: 

 

  
 

ft3.61Lft00.71

50

14.27-

1.01.0
7.571.2 b               Eq. (6.10.1.6-2) 

 

Therefore, Eq. 6.10.1.6-2 is satisfied, and amplification of the first-order elastic compression-

flange lateral bending stresses is not required.  The flange lateral bending stress, fℓ, determined 

from the first-order elastic analysis is sufficient; thus fℓ = -6.95 ksi.  The factored flange lateral 

bending stress is less than the limit of 0.6Fyf = 0.6(50) = 30.0 ksi specified in Article 6.10.1.6. 

 

7.3.5 Flexure (Article 6.11.3.2) 

 

For critical stages of construction, Article 6.11.3.2 directs the engineer to the provisions of 

Article 6.10.3.2 to compute the resistance of top flanges of tub sections.  The unbraced length 

should be taken as the distance between interior cross frames or diaphragms.  However as stated 

in the commentary to Article 6.11.3.2, top lateral bracing attached to the flanges at points where 

only struts exist between the flanges may be considered as brace points at the discretion of the 

engineer. 

 

Article 6.10.3.2.1 requires that discretely braced flanges in compression satisfy the following: 

 

  ychfbu FRff          Eq. (6.10.3.2.1-1) 

 

  ncfbu Ff
3

1
f          Eq. (6.10.3.2.1-2) 

 

  crwfbu Ff          Eq. (6.10.3.2.1-3) 

 

Article 6.11.3.2 requires that the noncomposite box flange (bottom flange) in tension satisfy: 

 

 Δ FRf yfhfbu         Eq. (6.11.3.2-3) 

 

where:  f  =  resistance factor for flexure from Article 6.5.4.2 (f = 1.0) 

 Rh = hybrid factor specified in Article 6.10.1.10.1 (1.0 at homogeneous Section G2-1)  

 Fcrw =  nominal elastic bend-buckling resistance for webs determined as specified in 

Article 6.10.1.9  

 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.10.8.2 (i.e. local or lateral torsional buckling resistance, as applicable).  

The provisions of Article A6.3.3 are not to be used to determine the lateral 

torsional buckling resistance of top flanges of tub girders with compact or 

noncompact webs, as specified in Article 6.11.3.2. 
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 Δ  =  a factor dependent on the St. Venant torsional shear stress in the bottom flange.  

St. Venant torsional shear stress will be addressed later in this example. 

 

7.3.5.1 Top Flange 

 

7.3.5.1.1 Top Flange: Yielding  

 

First, check that the top flanges satisfy Eq. 6.10.3.2.1-1 as follows: 

 

 ychfbu FRff          Eq. (6.10.3.2.1-1) 

 

ksi22.1295.627.14fbuf    

 

    ksi 21.22  ksi 50.0501.01.0ycFhRf    OK (Ratio = 0.424) 

 

7.3.5.1.2 Top Flange: Local Buckling Resistance (Article 6.10.8.2.2) 

 

Determine the slenderness ratio of the top flange: 

 

fc

fc

f
t2

b
          Eq. (6.10.8.2.2-3) 

 

 
 

00.8
1.002

16
λ f   

 

Determine the limiting slenderness ratio for a compact flange (alternatively see table 

C6.10.8.2.2-1): 

 

yc

pf
F

E
38.0         Eq. (6.10.8.2.2-3) 

 

 15.9
50

000,29
38.0pf   

 

Since f  <  pf, 

 ychbnc FRRF         Eq. (6.10.8.2.2-1) 

 

Since Rb is taken as 1.0 for constructibility,  

 

     ksi 50501.01.0Fnc   
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Check Eq. 6.10.3.2.1-2 as follows: 

 

      ksi 0.0550.01.0  16.59ksi95.6
3

1
14.27   OK (Ratio = 0.332) 

 

7.3.5.1.3 Top Flange: Lateral Torsional Buckling Resistance (Article 6.10.8.2.3) 

 

The limiting unbraced length, Lp, was computed earlier to be 7.57 feet.  The effective radius of 

gyration for lateral torsional buckling, rt, for the noncomposite Section G2-1 was also computed 

earlier to be 3.77 inches. The computations for Lp and rt are shown in Section 7.3.4 discussing 

the top flange lateral bending amplification. 

 

Determine the limiting unbraced length, Lr: 

 

 
yr

tr
F

E
r πL         Eq. (6.10.8.2.3-5) 

 

 
ft28.41

500.7

29,000

12

(3.77) π
L r   

 

Since Lp = 7.57 feet < Lb = 16.30 feet < Lr = 28.41 feet, Eq. (6.10.8.2.3-2) is used to compute the 

lateral torsional buckling resistance. 

 

 ychbychb
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F
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   Eq. (6.10.8.2.3-2) 

 

Compute the moment-gradient modifier, Cb, to be used in Eq. (6.10.8.2.3-2), where 

 

 Cb = 1.0 for members where fmid/f2 > 1 or f2 =0   Eq. (6.10.8.2.3-6) 

 

 Otherwise: 3.2
f

f
3.0

f

f
05.175.1C

2

2

1

2

1

b 




















    Eq. (6.10.8.2.3-7) 

 

where: 

 

fmid =  flange stress without the consideration of lateral bending at the middle of the 

unbraced length of the flange under consideration.  fmid shall be due to factored 

loads and shall be taken as positive in compression and negative in tension. 

 

f2 =  largest compressive flange stress without consideration of lateral bending at either 

end of the unbraced length of the flange under consideration.  f2 shall be due to 

factored loads and shall be taken as positive.  If the flange stress is zero or tensile 
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in the flange under consideration at both ends of the unbraced length, f2 shall be 

taken as zero. 

 

f1 =  in the case of Section G2-1, the moment diagram along the entire length between 

brace points is concave in shape, and therefore, f1 = f0, and is the stress without 

consideration of lateral bending at the brace point opposite to the one 

corresponding to f2.  

 

The largest compressive stress at the end of the unbraced length under consideration is at the 

brace point 65.04 ft into span 1.  From calculations not shown herein, the unfactored moments at 

65.04 ft due to steel self-weight and Cast #1 are 1,115 k-ft and 3,361 k-ft, respectively.  

Therefore, f2 is calculated as: 

 

 ksi49.15
4,334

3,361)(12)  1,1151.0(1.25)(
f2 


  

 

fmid is the compressive stress at the location under investigation, previously computed as 14.27 

ksi in compression.  Check the fmid/f2 ratio: 

 

 1.0    0.92
15.49

14.27

f

f

2

mid   

 

Therefore, Cb can be calculated using Eq. (6.10.8.2.3-7).  First, it is necessary to compute f1, 

which is the flange stress at the opposite brace point from f2.  From calculations not shown 

herein, the unfactored moments at 48.77 ft due to steel self-weight and Cast #1 are 1,116 k-ft and 

2,588 k-ft, respectively.  Therefore, f1 is calculated as: 

 

 ksi82.12
4,334

2,588)(12)  1,1161.0(1.25)(
f1 


  

 

Cb is computed as: 

 

 3.2  1.09
15.49

12.82
0.3

15.49

12.82
1.051.75C

2

b 
















  

 

Therefore, the lateral torsional buckling resistance is: 

 

 
 

  
        ksi 50501.01.0  ksi 47.7501.01.0

7.5728.41

7.5716.30

501.0

500.7
111.09Fnc 




























  

 

Check Eq. 6.10.3.2.1-2 as follows: 

 

      ksi 47.747.71.0  ksi 16.5995.6
3

1
14.27   OK (Ratio = 0.348) 
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Although not necessary in this case, if a larger lateral torsional buckling resistance had been 

required, then the equations of Article D6.4.1 could have alternatively been used to potentially 

obtain a larger resistance since Cb is greater than 1.0.   

 

7.3.5.1.4 Top Flange: Web Bend-Buckling Resistance (Article 6.10.1.9) 

 

Determine the nominal elastic web bend-buckling resistance at Section G2-1 according to the 

provisions of Article 6.10.1.9.1 as follows: 

 

 



























0.7

F
 ,FRmin

t

D

0.9Ek
F

yw

ych2

w

crw
     Eq. (6.10.1.9.1-1) 

where: 

 

 
 2

c DD

9
k          Eq. (6.10.1.9.1-2) 

 

In earlier calculations, Dc was computed as 43.06 in. along the inclined web.   

 

 1.31

04.80

06.43

9
k

2










  

 

Therefore, 

 

 ksi50F Rksi73.39

0.5625

80.4

)(31.1)0.9(29,000
F ych2crw 









  

 

Check Eq. (6.10.3.2.1-3), 

 

    ksi 40.1140.111.0  ksi 14.2714.27   OK (Ratio = 0.356) 

 

It should be noted that the web bend-buckling resistance is generally checked against the 

maximum compression flange stress due factored loads, without consideration of flange lateral 

bending, as shown in the previous calculation.  Since web-bend buckling is a check of the web, 

the maximum flexural compression stress in the web could be calculated and used for 

comparison against the bend-buckling resistance.  However, the precision associated with 

making the distinction between the stress in the compression flange and the maximum 

compressive stress in the web is typically not warranted. 
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7.3.5.2 Bottom Flange 

 

Noncomposite tub flanges in tension, in this particular case the bottom flange, must satisfy the 

following requirement: 

 

 Δ FRf yfhfbu         Eq. (6.11.3.2-3) 

 

where: 

 

 

2

yf

v

F

f
31Δ














        Eq. (6.11.3.2-4) 

 

The term fv is the factored St. Venant torsional shear stress in the flange at the section under 

consideration, and is taken as: 

 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.
3
) 

 tf  =  bottom flange thickness (in.) 

 

Compute the enclosed area of the noncomposite box section, Ao. 
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o in. 2197,
2
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2
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As shown in Table 7 the unfactored torques due to steel self-weight and Cast #1 are 59 kip-ft and 

464 kip-ft, respectively.  Therefore, 

 

 
   

  
iks 0.50

1.007,921 2
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The factored bottom flange major-axis bending stress, calculated previously, is 12.30 ksi.  Check 

Eq. 6.11.3.2-3 as follows: 

 

        50.0ksi1.0501.01.0  Δ FR  ksi 12.30f yfhfbu   OK (Ratio = 0.246) 
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Although the check here of the bottom flange is illustrated for completeness, the bottom flange 

will typically not govern the constructibility check in regions of positive flexure. 

 

7.3.6 Shear (Article 6.10.3.3) 

 

Article 6.10.3.3 requires that interior panels of stiffened webs satisfy the following requirement: 

 

      crvu VV       Eq. (6.10.3.3-1) 

 

where: v = resistance factor for shear = 1.0 (Article 6.5.4.2) 

  Vu = shear in the web at the section under consideration due to the factored permanent 

loads and factored construction loads applied to the noncomposite section 

  Vcr = shear buckling resistance determined from Eq. (6.10.9.3.3-1)  

 

Only the interior panels of stiffened webs are checked because the shear resistance of the end 

panel of stiffened webs and the shear resistance of unstiffened webs are already limited to the 

shear buckling resistance at the strength limit state. 

 

For this example, the web is unstiffened in the positive moment regions.  Therefore, the 

constructibilty check for shear is not required at this section.   

 

7.3.7 Concrete Deck (Article 6.10.3.2.4) 

 
Generally, the entire deck is not placed in a single pour.  Typically, for continuous span bridges, 
the positive flexure regions are placed first.  Thus positive flexure regions may become 
composite prior to casting the other sections of the bridge.  As the deck placement operation 
progresses, tensile stresses can develop in previously cast regions that will exceed the allowable 

rupture strength (fr) in the hardened deck.  When cracking is predicted, longitudinal deck 
reinforcing as specified in Article 6.10.1.7 is required to control cracking.  Otherwise, alternative 
deck casting sequences must be employed to minimize the anticipated stresses to acceptable 
levels.  This check is illustrated in Example 1. 

7.4 Girder Check: Section G2-1, Service Limit State (Article 6.11.4)  

 

Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 

control of elastic and permanent deformations at the Service Limit State. 

 

7.4.1 Permanent Deformations (Article 6.10.4.2) 

 

Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 

rideability.  As specified in Article 6.10.4.2.1, these checks are to be made under the Service II 

load combination.   

 

Article 6.10.4.2.2 requires that flanges of composite sections satisfy the following: 
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 Top flange of composite sections:     yfhf FR95.0f       Eq. (6.10.4.2.2-1) 

 

 Bottom flange of composite sections: yfhf FR95.0
2

f
f        Eq. 

(6.10.4.2.2-2) 

 

The term ff is the flange stress at the section under consideration due to the Service II loads 

calculated without consideration of flange lateral bending.  The fℓ term, the flange lateral 

bending stress, in Eq. 6.10.4.2.2-2 is to be taken equal to zero, in accordance with Article 6.11.4, 

for tub girder bottom flanges.  A resistance factor is not included in these equations because 

Article 1.3.2.1 specifies that the resistance factor be taken equal to 1.0 at the service limit state. 

 

It should be noted that in accordance with Article 6.11.4 redistribution of negative moment due 

to the Service II loads at the interior-pier sections in continuous span flexural members using the 

procedures specified in Appendix B6 is not to be applied to tub girder sections.  The applicability 

of the Appendix B6 provisions to tub girder sections has not been demonstrated; hence, the 

procedures are not permitted for the design of tub girder sections. 

 

Furthermore, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-

1, Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 need only be checked for compact sections in positive 

flexure.  For sections in negative flexure and noncompact sections in positive flexure, these two 

equations do not control and need not be checked.  Composite sections in all horizontally curved 

girder systems are to be treated as noncompact sections at the strength limit state, in accordance 

with Article 6.11.6.2.2.  Therefore, for Section G2-1, Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 do not 

need to be checked, and are not checked in this example. 

 

7.4.2 Web Bend-Buckling 

 

With the exception of composite sections in positive flexure in which the web satisfies the 

requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (D/tw ≤ 150), web bend-buckling of all sections 

under the Service II load combination is to be checked as follows: 

 

 crwc Ff          Eq. (6.10.4.2.2-4) 

 

The term fc is the compression-flange stress at the section under consideration due to the Service 

II loads calculated without consideration of flange lateral bending, and Fcrw is the nominal elastic 

bend-buckling resistance for webs determined as specified in Article 6.10.1.9.  Because Section 

G2-1 is a composite section subject to positive flexure satisfying Article 6.11.2.1.2, Eq. 

(6.10.4.2.2-4) need not be checked as D/tw = 142.9 which is less than 150.  An explanation as to 

why these particular sections are exempt from the above web bend-buckling check is given in 

Article C6.10.1.9.1.  

 

7.5 Girder Check: Section G2-1, Fatigue Limit State (Article 6.11.5)  
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Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder section flexural 

members must be investigated for fatigue as specified in Article 6.6.1.  As appropriate, the 

Fatigue I and Fatigue II load combinations specified in Table 3.4.1-1 and the fatigue live load 

specified in Article 3.6.1.4 are to be employed for checking load-induced fatigue in tub girder 

sections.  The Fatigue I load combination is to be used in combination with design checks for 

infinite fatigue life.  The Fatigue II load combination is to be used in combination with design 

checks for finite fatigue life. 

As specified in Article 6.11.5, one additional requirement specified particularly for tub girders 

sections is in regard to longitudinal warping and transverse bending stresses.  When tub girders 

are subjected to torsion, their cross-sections become distorted, resulting in secondary bending 

stresses.  Therefore, longitudinal warping stresses and transverse bending stresses due to cross-

section distortion are to be considered in the fatigue checks for: 

 

 Single tub girders in straight or horizontally curved bridges; 

 Multiple tub girders in straight bridges that do not satisfy requirements of Article 

6.11.2.3; 

 Multiple tub girders in horizontally curved bridges; or 

 Any single or multiple tub girder with a bottom flange that is not fully effective 

according to the provisions of Article 6.11.1.1. 

 

Therefore, in this design example for Section G2-1, the stress range due to longitudinal warping 

resulting from cross-section distortion in the girders is considered in checking the fatigue 

resistance of the base metal.  For simplicity in this design example, it is assumed that the 

longitudinal warping stresses are approximately equal to 10 percent of the longitudinal stresses 

caused by the major-axis bending moment.  Thus, for the calculations contained herein at Section 

G2-1, the fatigue vertical bending moments are simply increased by 10 percent in computing the 

stress range.   

 

The transverse bending stress range is considered separately from the longitudinal warping stress 

range for evaluating the fatigue resistance of the base metal adjacent to flange-to-web fillet welds 

and adjacent to the termination of fillet welds connecting transverse elements to webs and box 

flanges.  The transverse bending stress range is not computed in this design example for Section 

G2-1.  More exact calculations to determine the stress range from longitudinal warping and 

transverse bending due to cross-section distortion can be carried out using the beam-on-elastic-

foundation analogy (BEF) presented by Wright and Abdel-Samad [3].  Sample calculations for 

determining these distortional stresses based on the BEF analogy are presented in the 2003 

AASHTO Guide Specification for Horizontally Curved Steel Girder Highway Bridges [10], 

which is superseded by the current AASHTO specifications.  Calculations demonstrating the use 

of the BEF analogy to compute the longitudinal warping stress and transverse bending stress 

ranges are included as part of the fatigue check of Section G2-2. 

 

At Section G2-1, it is necessary to check the bottom flange for the fatigue limit state.  The base 

metal at the transverse stiffener weld terminations and internal cross frame connection plate 

welds at locations subject to a net tensile stress must be checked as a Category C′ fatigue detail 

(reference Table 6.6.1.2.3-1).  Only the bottom flange is checked herein, as a net tensile stress is 

not induced in the top flange by the fatigue loading at this location. 



 

65 

 

 

According to Table 3.6.2.1-1, the dynamic load allowance for fatigue loads is 15%.  Centrifugal 

force effects are considered and included in the fatigue moments.  As discussed previously, the 

75-year single lane ADTT is assumed to be 1,000 trucks per day. 

 

According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n.  In 

accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 

1.0 for the fatigue limit state. 

 

    nFf          Eq. (6.6.1.2.2-1) 

 

From Table 6.6.1.2.3-2, the 75-year (ADTT)SL equivalent to infinite fatigue life for a Category 

C′ fatigue detail is 745 trucks per day.  Therefore, since the assumed (ADTT)SL for this design 

example is 1,000 trucks per day, the detail must be checked for infinite fatigue life using the 

Fatigue I load combination.  In accordance with Article 6.6.1.2.5, the nominal fatigue resistance 

for infinite fatigue life is equal to the constant-amplitude fatigue threshold: 

 

    THn FF         Eq. (6.6.1.2.5-1) 

 

where (ΔF)TH is the constant-amplitude fatigue threshold, and is taken from Table 6.6.1.2.5-3.  

For a Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 

 

    ksi 12.0ΔF n   

 

As shown in Table 7 the unfactored negative and positive moments due to fatigue, including 

centrifugal force effects and the 15 percent dynamic load allowance, at Section G2-1 are -290 

kip-ft and 1,525 kip-ft, respectively.  The short-term composite section properties (n = 7.56) used 

to compute the stress at the bottom of the web (top of the bottom flange) are: 

 

 INA(n) = 478,009 in.
4
 

 

 dBOT OF WEB = dBOT OF STEEL – tf_BOT FLANGE = 68.56 in. – 0.625 in. = 67.94 in. 

 

As specified in Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.5. The 

total factored stress range at the bottom of the web, including the 10 percent increase estimate for 

the longitudinal warping stress, is computed as follows: 

 

    
    

ksi 5.11
478,009

67.94121,5252901.10
1.5Δfγ 













 
  

 

Check Eq. (6.6.1.2.2-1) as follows:  

 

     0.426)  (RatioOK           ksi 12.00ΔFksi 5.11Δfγ n   
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7.5.1 Special Fatigue Requirements for Webs 

 

In accordance with Article 6.10.5.3, interior panels of stiffened webs must satisfy: 

 

 cru VV          Eq. (6.10.5.3-1) 

 

where: Vu = shear in the web at the section under consideration, due to unfactored permanent 

loads plus the factored fatigue load (Fatigue I) 

 

 Vcr = shear buckling resistance determined from Eq. (6.10.9.3.3-1). 

 

Satisfaction of Eq. (6.10.5.3-1) is intended to control elastic flexing of the web, such that the 

member is assumed to be able to sustain an infinite number of smaller loadings without fatigue 

cracking due to this effect. The live load shear in the special requirement is intended to represent 

the heaviest truck expected to cross the bridge in 75 years. 

 

Only interior panels of stiffened webs are investigated because the shear resistance of end panels 

of stiffened webs and the shear resistance of unstiffened webs are limited to the shear buckling 

resistance at the Strength limit state. 

 

The detailed check of this special fatigue requirement for webs is not illustrated in this example; 

however, similar checks are illustrated in Example 1. 

 

7.6 Girder Check: Section G2-1, Strength Limit State (Article 6.11.6)   

 

7.6.1 Flexure (Article 6.11.6.2) 

 

According to Article 6.11.6.2.2, sections in horizontally curved steel tub girder bridges are to be 

considered noncompact sections and are to satisfy the requirements of Article 6.11.7.2.  

Furthermore, compact and noncompact sections in positive flexure must satisfy the ductility 

requirement specified in Article 6.10.7.3.  The ductility requirement is intended to protect the 

concrete deck from premature crushing.  The section must satisfy: 

 

 tp D 0.42D          Eq. (6.10.7.3-1) 

 

Where Dp is the distance from the top of the concrete deck to the neutral axis of the composite 

section at the plastic moment, and Dt is the total depth of the composite section.  Reference the 

section property computations for the location of the neutral axis of the composite section at the 

plastic moment.  At Section G2-1: 

 

 in.12.770.270.10.49.5Dp   

 

 in.92.139.50.40.870.625D t   

 

 in.12.77in.69.83)0.42(92.130.42D t    OK (Ratio = 0.330) 
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For a horizontally curved steel tub girder at the strength limit state, noncompact sections in 

positive flexure must satisfy the provisions of Article 6.11.7.2.  At the strength limit state, the 

compression flanges of tub sections must satisfy: 

 

 ncfbu Ff          Eq. (6.11.7.2.1-1) 

 

where: 

 

 fbu  = longitudinal flange stress at the section under consideration calculated without 

consideration of flange lateral bending or longitudinal warping 

 f  =  resistance factor for flexure as specified in Article 6.5.4.2 (f = 1.0) 

 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.11.7.2.2 

 

Flange lateral bending is not considered for the compression flanges in positive bending at the 

strength limit state because the flanges are continuously supported by the concrete deck.  In 

accordance with Article 6.11.1.1, longitudinal warping stresses may be ignored at the strength 

limit state.  However, St. Venant torsion and cross-section distortion stresses in the bottom box 

flange must be considered for noncompact sections. 

 

At the strength limit state, the tension flange must satisfy: 

 

 ntfbu Ff          Eq. (6.11.7.2.1-2) 

 

where: 

 

 Fnt  =  nominal flexural resistance of the tension flange determined as specified in 

Article 6.11.7.2.2 

 

Lateral bending does not need to be considered for the tension flange, in this case the bottom 

flange, as lateral bending is typically negligible in bottom flanges of tub girders. 

 

Furthermore, the maximum longitudinal compressive stress in the concrete deck at the strength 

limit state is not to exceed 0.6f′c.  The longitudinal compressive stress in the deck is to be 

determined in accordance with Article 6.10.1.1d, which allows the permanent and transient load 

stresses in the concrete deck to be computed using the short-term section properties (i.e. modular 

ratio taken as n). 

 

The unfactored bending moments at Section G2-1 are taken directly from the analysis and are 

shown below (see ).  The live load moment includes the centrifugal force and dynamic load 

allowance effects. 

 

 Noncomposite Dead Load:  MDC1  = 5,891 kip-ft 

 Composite Dead Load:  MDC2  = 765 kip-ft 

 Future Wearing Surface Dead Load: MDW = 1,006 kip-ft 
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 Live Load (incl. IM and CF): MLL+IM = 5,920 kip-ft 

 

Compute the factored flange flexural stresses at Section G2-1 for the Strength I load 

combination, without consideration of flange lateral bending.  As discussed previously, the  

factor is taken equal to 1.0 in this example.  Therefore: 

 

For Strength I: 

 

 Top Flange: 

 

 ksi33.2512
43,181

,920)51.75(

14,329

,006)11.5(

14,329

65)71.25(

4,334

,891)51.25(
1.0f bu 








  

 

Bottom Flange: 

 

 ksi02.4012
6,972

,920)51.75(

6,406

,006)11.5(

6,406

65)71.25(

5,029

,891)51.25(
1.0f bu 








  

 

In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear are 

to be considered in horizontally curved tub girder bridges.  Therefore, compute the factored St. 

Venant torsional shear stress, fv, in the bottom flange for the Strength I load combination.  fv is 

determined by dividing the St. Venant torsional shear flow [ f = T/(2Ao) ] by the thickness of the 

bottom flange: 

 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.
3
) 

 tf  =  bottom flange thickness (in.) 

 

The unfactored torques at Section G2-1 obtained directly from the analysis are shown below (see 

Table 7).  The live load torque includes the centrifugal force and dynamic load allowance effects. 

 

 Noncomposite Dead Load:  TDC1  = 264 kip-ft 

 Composite Dead Load:  TDC2  = 41 kip-ft 

 Future Wearing Surface Dead Load: TDW = 54 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 525 kip-ft 

 

Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 

computed for the noncomposite section.  Since the top lateral bracing in this example is attached 

to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 
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of the top and bottom flanges.  Furthermore, for torques applied to the composite section, Ao is to 

be computed for the composite section, using the depth from the mid-thickness of the bottom 

flange to the mid-thickness of the concrete deck.  In this example, the height of the deck haunch 

is considered.   

 

Compute the enclosed area of the noncomposite tub section, Ao_NC. 

 

 
    2

o_NC in. 9217,
2

0.625
78

2

1.00

2

1283120
A 











  

 

Compute the enclosed area of the composite tub section, Ao_C. 

 

 
    2

o_C in. 8,750
2

9.50
4.00

2

0.625
78

2

1283120
A 











  

 

Compute the factored Strength I St. Venant torsional shear stress on the noncomposite section: 

 

  
   
  

ksi 0.40
0.6257,921 2

122641.25
1.0f v_NC   

 

Compute the factored Strength I St. Venant torsional shear stress on the composite section: 

 

  
          

  
ksi 15.1

0.6258,750 2

1252575.15450.1411.25
1.0f v_C 


  

 

Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 

 

 ksi 1.551.150.40f v   

 

According to Article 6.11.1.1, the St. Venant torsional shear stress in box flanges due to factored 

loads at the strength limit state is not to exceed the factored torsional shear resistance of flange, 

Fvr, taken as: 

 

 
3

F
75.0F

yf

vvr         Eq. (6.11.1.1-1) 

 

where: 

 

 v  = resistance factor for shear specified in Article 6.5.4.2 

 

Therefore: 
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   ksi 1.55f    ksi 21.65
3

50
1.00.75F vvr   OK 

 

7.6.1.1 Top Flange Flexural Resistance in Compression 

 

In accordance with Article 6.11.7.2.2, the nominal flexural resistance of the compression flanges 

of noncompact composite tub sections is to be taken as: 

 

 ychbnc FRRF         Eq. (6.11.7.2.2-1) 

 

where: 

 

 Rb  =  web load-shedding factor determined as specified in Article 6.10.1.10.2 

 Rh =  hybrid factor determined as specified in Article 6.10.1.10.1. 

 

For a homogenous girder, the hybrid factor, Rh, is equal to 1.0.  In accordance with Article 

6.10.1.10.2, the web load-shedding factor, Rb, is equal to 1.0 for composite section in which the 

web satisfies the requirement of Article 6.11.2.1.2, such that D/tw ≤ 150. 

 

 1509.142
5625.0

40.80

t

D

w

  

 

Therefore: 

 

     ksi 50.0050.01.01.0Fnc   

 

For Strength I: 

 

 ncfbu Ff          Eq. (6.11.7.2.1-1) 

 

      ksi 50.0050.001.0Fksi 25.33f ncfbu 
 

OK (Ratio = 0.507) 

 

7.6.1.2 Bottom Flange Flexural Resistance in Tension 

 

Article 6.11.7.2.2 states that the nominal flexural resistance of the tension flange of a 

noncompact tub section is to be taken as: 

 

  ythnt FRF         Eq. (6.11.7.2.2-5) 

 

in which: 
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2

yt

v

F

f
31Δ














        Eq. (6.11.7.2.2-6) 

 

 999.0
50.0

1.55
31Δ

2









  

 

Therefore: 

 

     ksi 93.940.99950.01.0Fnt   

 

For Strength I: 

 

 ntfbu Ff          Eq. (6.11.7.2.1-2) 

 

      ksi 93.9449.931.0Fksi 02.40f ntfbu 
 

OK (Ratio = 0.802) 

 

Note that longitudinal warping stresses due to cross-section distortion do not need to be 

considered at the strength limit state.  However, transverse bending stresses due to cross-section 

distortion do need to be considered at the strength limit state and are not to exceed 20.0 ksi as 

specified in Article 6.11.1.1.  However, in this design example for Section G2-1, it is assumed 

that the transverse bending stresses at the strength limit state do not exceed 20.0 ksi.  For more 

detailed calculations of the transverse bending stress at the strength limit state, see the 

computations for Section G2-2 in this design example. 

 

 

7.6.1.3 Concrete Deck Stresses 

 

According to Article 6.11.7.2.1, the maximum longitudinal compressive stress in the concrete 

deck at the strength limit state is not to exceed 0.6f′c.  This limit is to ensure linear behavior of 

the concrete, which is assumed in the calculation of steel flange stresses.  The longitudinal 

compressive stress in the deck is to be determined in accordance with Article 6.10.1.1d, which 

allows the permanent and transient load stresses in the concrete deck to be computed using the 

short-term section properties (n = 7.56 composite section properties).  Referring to Table 10 of 

the section property calculations, the section modulus to the top of the concrete deck is: 

 

 
3

deck in. 20,280
68.5692.13

478,009
S 




 

 

Calculate the Strength I factored longitudinal compressive stress in the deck at this section, 

noting that the concrete deck is not subjected to noncomposite dead loads.  The stress in the 

concrete deck is obtained by dividing the stress acting on the transformed section by the modular 

ration, n. 
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ksi00.112

56.720,280

920,575.11,0061.565)71.25(
1.0f deck 







 


 
 

   ksi 2.404.00.60.6f'ksi1.00f cdeck   OK (Ratio = 0.417) 

 

7.7 Girder Check: Section G2-2, Constructibility (Article 6.11.3)  

 

7.7.1 Flexure (Article 6.11.3.2) 

 

The bottom flange, in regions of negative flexure, is to satisfy the requirements of Eqs. (6.11.3.2-

1) and (6.11.3.2-2) for critical stages of construction.  Generally these provisions will not control 

because the size of the bottom flange in negative flexure regions is normally governed by the 

Strength Limit State.  In regard to construction loads, the maximum negative moment reached 

during the deck placement analysis, plus the moment due to the self-weight, typically does not 

significantly exceed the calculated noncomposite negative moments assuming a single stage 

deck pour.  Nonetheless, the constructibility check is performed herein for completeness and to 

illustrate the constructibility checks required for a negative moment region.  For this 

constructibility check, it is assumed that the concrete deck has not yet hardened at Section G2-2. 

 

 ncfbu Ff          Eq. (6.11.3.2-1) 

 

 crwfbu Ff          Eq. (6.11.3.2-2) 

 

Additionally, the top flanges, which are considered discretely braced for constructibility (i.e. the 

deck is not hardened), must satisfy the requirement specified in Article 6.10.3.2.2.  Because the 

top flange is discretely braced, flange lateral bending must be considered, as shown in Eq. 

6.10.3.2.2-1. 

 

 ythfbu FRff          Eq. (6.10.3.2.2-1) 

 

To illustrate this constructibility check, from separate analysis results not shown, the unfactored 

major-axis bending moment due to the deck pour sequence is -12,272 kip-ft.  As shown in Table 

4, the unfactored major-axis moment due to steel self-weight is -3,154 kip-ft.  

 

Calculate the factored major-axis flexural stresses in the flanges of the steel section due to the 

factored load resulting from the steel self-weight and the assumed deck pour sequence. 

 

For Construction Strength I: 

 

 Top Flange:  ksi01.23
10,057

(12)(-12,272)]  (-3,154)1.0(1.25)[
f bu 


  

 



 

73 

 

 Bot. Flange: ksi45.20
11,316

(12)(-12,272)]  (-3,154)1.0(1.25)[
f bu 


  

 

For this example, and illustration purposes, the V-load equation is used to compute the top flange 

lateral bending moment due to curvature.  For a single flange, consider only one-half of the 

girder major-axis moment due to steel self-weight and the deck placement sequence.  

 

    
tf-kip 713,7-

2

272,12154,3
M 


   

 

  
   

ft-kip 7.36
5.625.71612

23.16713,7

D R N

2 M
LATM 





  Eq. (C4.6.1.2.4b-1) 

 

Combine the flange lateral bending moment computed using the V-load equation with the 

factored lateral moment due to the overhang brackets, which was computed previously in the 

Section G2-1 calculations.  Noting that the factored flange lateral bending moment due to the 

deck overhang bracket loads is 12.4 kip-ft, the factored flange lateral bending moment and flange 

lateral bending stress are computed as: 

 

    tf-kip 3.584.127.3625.1TOT_LATM   

 

 ksi4.32
62(3.00)(18)

(58.3)(12)

S

LAT_TOTM
f 


  

 

Because the top flanges are subject to tension at Section G2-2, amplification of the first-order 

flange lateral bending stress is not required.  The factored flange lateral bending stress is less 

than the limit of 0.6Fyf = 0.6(50) = 30.0 ksi specified in Article 6.10.1.6. 

 

It should be noted that another significant source of flange lateral bending results from forces 

that develop in the single-diagonal top flange bracing members resulting from the major-axis 

bending of the tub girder.  This effect is recognized in flange lateral moments taken directly from 

a finite element analysis.  In the absence of a refined analysis, Fan and Helwig [8] have 

developed equations to evaluate bracing member forces and the forces imparted on the top 

flanges of tub girders resulting from major-axis bending of the girder.  The flange lateral bending 

due to the top lateral bracing is not considered in these computations.  However, in an actual 

bridge design the top-flange lateral bending moments due to the forces in the top lateral bracing 

members resulting from major-axis bending should be considered, and can be computed using 

the procedures suggested by Fan and Helwig [8]. 

 

Compute the factored St. Venant torsional shear stress, fv, in the bottom flange for the Strength I 

load combination.   
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fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 

Compute the enclosed area of the noncomposite tub section, Ao. 

 

 
    2

o in. 065,8
2

1.50
78

2

3.00

2

1283120
A 











  

 

The unfactored torques due to steel self-weight and Cast #1 are -22 kip-ft and -33 kip-ft, 

respectively (note that results for Cast #1 at this location are not provided in the analysis results 

table).  Therefore, 

 

  
   

  
ksi 0.03 

1.508,065 2

1233221.25
1.0f v 


  

 

7.7.1.1 Top Flange 

 

Check that the top flange tension stress is in compliance with Article 6.10.3.2.2: 

 

 ythfbu FRff          Eq. (6.10.3.2.2-1) 

 

For Construction Strength I: 

 

 ksi 27.33ksi 4.32ksi 23.01fbuf    

 

    ksi 50.050.01.01.0FR ythf   

  

  ksi 50.0ytFhRf  ksi 27.33fbuf    OK (Ratio = 0.547) 

 

7.7.1.2 Bottom Flange 

 

7.7.1.2.1 Bottom Flange: Flexural Resistance in Compression – Stiffened Flange 

 

Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 

with Article 6.11.8.2.  Per Article 6.11.3.2, in computing Fnc for constructibility, the web load-

shedding factor, Rb, is to be taken as 1.0.  The bottom flange is longitudinally stiffened at this 

location with a single WT 8x28.5 stiffener, placed at the center of the bottom flange.  Therefore, 

Article 6.11.8.2.3 applies. 

 

Determine the slenderness ratio of the bottom flange: 

 

 
fc

fc

f
t

b
         Eq. (6.11.8.2.2-8) 
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where, in this case: 

 

 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners 

or the distance from a web to the nearest longitudinal flange stiffener. 

 

Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 

longitudinal stiffener to the centerline of the web. 

 

 00.27
50.1

2

81

λ f 










  

 

Calculate the first limiting slenderness ratio: 

 

 



yc

p
F

Ek
57.0λ        Eq. (6.11.8.2.2-9) 

 

where k is computed in accordance with Article 6.11.8.2.3 for longitudinally stiffened flanges, 

and  is computed as specified in Article 6.11.8.2.2. 

 

As specified in Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the 

plate-buckling coefficient for uniform normal stress, k, is to be taken as: 

 

 
3

1

3

fc

S

 tw

I 8
k














         Eq. (6.11.8.2.3-1) 

 

and: 

 

2

yc

v

F

f
31Δ














        Eq. (6.11.8.2.2-11) 

 

where: 

 

 fv  =  factored St. Venant torsional shear stress in the flange (ksi) 

 n =  number of equally spaced longitudinal flange stiffeners 

 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 

 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener (in.
4
) 
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Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 

stiffness to cross-sectional area.  For the WT 8x28.5 stiffener, Ix = 48.7 in.
4
, A = 8.39 in.

2
, and 

the elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 

 

    42

S in. 379.66.288.3948.7I   

        

Compute the plate-buckling coefficient k: 

 

 

 
0.481.2

1.50 
2

81

379.6 8
k

3

1

3





























  

 

Compute the Δ term: 

 

 00.1
50.0

0.03
31Δ

2









  

 

Compute p: 

 

 
  
  

01.23
00.10.50

81.229,000
0.57λp   

 

Since f is greater than 23.01 (f = 27.00), it is necessary to compute the second limiting 

slenderness ratio: 

 

yr

r
F

Ek
95.0λ         Eq. (6.11.8.2.2-10) 

 

where: 

 

   ywycyr FF0.3ΔF        Eq. (6.11.8.2.2-13) 

 

    ksi 50Fksi 35.0500.31.0F ywyr   

 

Compute r: 

 

 
 

84.45
35.0

)81.2(29,000
95.0λ r   

 



 

77 

 

Since p  <  f  = 27.00  ≤  r, then the nominal axial compression buckling resistance of the 

flange under compression alone, Fcb, is calculated as follows: 

   

 







































 


pr

pf

h

ychbcb
λλ

λλ

R

0.3Δ
ΔΔFRRF    Eq. (6.11.8.2.2-3) 

 

     














 







 


23.01-45.84

01.2300.27

1.0

0.31.0
1.01.0500.10.1Fcb  

 

 ksi 47.38Fcb   

 

Compute the nominal flexural resistance of the compression flange: 

 

 

2

cvv

v
cbnc

F

f
-1FF 











      Eq. (6.11.8.2.2-1) 

 

where: 

 

 Fcv = nominal shear buckling resistance of the flange under shear alone (ksi) 

 

In order to compute Fcv, first calculate ks, the plate-buckling coefficient for shear stress as 

specified in Article 6.11.8.2.3: 

 

 
34.5

1n

 tw

I
84.234.5

k
2

3

1

3

fc

S

S 

















      Eq. (6.11.8.2.3-3) 

 

 
  

 
34.533.2

11

50.15.40

379.6
84.234.5

k
2

3

1

3

S 












  

 

As specified in Article 6.11.8.2.2, if 
yc

s
f

F

Ek
1.12λ  , then: 

 

 Fcv = 0.58 Fyc       Eq. (6.11.8.2.2-5) 

  

 
  

17.41
50

33.2000,29
12.100.27λ f   
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Therefore: 

 

   ksi 29.05058.0Fcv   

  

Compute Fnc: 

 

 
  

ksi 47.38
0.290.1

0.03
-138.47F

2

nc 







  

 

Checking compliance with Eq. 6.11.3.2-1: 

 

 ncfbu Ff          Eq. (6.11.3.2-1) 

 

For Construction Strength I: 

 

    ksi 47.38  47.3800.1F  ksi 45.02-f ncfbu     OK (Ratio = 0.432) 

 

7.7.1.2.2 Bottom Flange: Flexural Resistance in Compression – Web Bend-Buckling 

 

According to Article 6.11.3.2, for sections with compact or noncompact webs, the web bend-

buckling check of Eq. 6.11.3.2-2 is not necessary.  Therefore, check if the web satisfies the 

noncompact slenderness limit given in Article 6.10.6.2.3. 

 

 
ycw

c

F

E
5.7

t

2D
        Eq. (6.10.6.2.3-1) 

 

where: 

 

 Dc  =  depth of web in compression in the elastic range (in.). 

 

For a tub girder, the depth of the web must be taken along the inclined web.  Therefore: 

 

 
 

8.136
5625.0

14.04 /cos1.538.822

t

2D

w

c 


  

 

 3.137
0.50

000,29
7.5

F

E
7.5

yc

  

 

Since Eq. 6.10.6.2.3-1 is satisfied the web is noncompact, and the web bend-buckling check of 

Eq. 6.11.3.2.-2 does not need to be investigated for constructibility. 
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7.7.1.3 Shear (Article 6.11.3.3) 

 

For constructibility, Article 6.10.3.3 requires that interior panels of stiffened webs satisfy the 

following requirement: 

 

 crvu VV          Eq. (6.10.3.3-1) 

 

where: 

 

 v  =  resistance factor for shear specified in Article 6.5.4.2 (v = 1.0) 

 Vu = shear in the web at the section under consideration due to the factored permanent 

loads and factored construction loads applied to the noncomposite section. 

 Vcr = shear-buckling resistance determined from Eq. (6.10.9.3.3-1). 

 

The panel on the Span 2 side of Section G2-2 will be investigated herein.  The transverse 

stiffener spacing at this location is 62 inches.  The total factored shear will include the 

contribution of the noncomposite dead load, and should not only include the vertical shear due to 

flexure but also shear in the web due to torsion.  Although not included herein, wind loads and 

construction live loads also need to be considered by the designer, as applicable.   The shears 

used in the computations below are for flexure plus the torsional shear in the critical web.  The 

critical web shear due to steel self-weight is 47 kips (see Table 2), and the critical web shear for 

Cast #1 is taken as 185 kips (analysis results not explicitly provided for Cast #1). 

 

For Construction Strength I: 

 

    kips 652851471.251.0uV   

 

However, it is required that the shear be taken along the inclined web, in accordance with Article 

6.11.9: 

 

 
)cos(θ

V
V

WEB

u

ui         Eq. (6.11.9-1) 

 

 kips 273
)cos(14.04

265
uiV 


  

 

The shear-buckling resistance of the 62 inch panel is determined as: 

 

 pcrn CVVV         Eq. (6.10.9.3.3-1) 

 

C is the ratio of the shear-buckling resistance to the shear yield strength determined as specified 

in Article 6.10.9.3.2.  First, compute the shear-buckling coefficient, k: 
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 41.31

80.4

62

5
5

D

d

5
5k

22

o





















     Eq. (6.10.9.3.2-7) 

 

Since: 

 

 5.123
50

41)29,000(13.
1.40

F

Ek
1.40142.9

0.5625

80.4

t

D

yww

   

 

 

























yw

2

w

F

Ek

t

D

57.1
C        Eq. (6.10.9.3.2-6) 

 

 
 

0.598
50

41)29,000(13.

142.9

1.57
C

2









  

 

Vp is the plastic shear force and is calculated as follows: 

 

 wywp  tD F 0.58V         Eq. (6.10.9.3.3-2) 

 

     kips 1,3110.562580.4050.0 0.58Vp   

 

Therefore, 

 

    kips 7841,3110.598pCVcrVnV   

 

 kips8471.0(784)crVv   

 

 kips 784crVvkips 732uiV    OK  (Ratio = 0.348)  

 

7.8 Girder Check: Section G2-2, Service Limit State (Article 6.11.4)   

 

Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 

control of elastic and permanent deformations at the Service Limit State.   

 

7.8.1 Permanent Deformations (Article 6.10.4.2) 

 

Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 

rideability.  As specified in Article 6.10.4.2.1, these checks are to be made under the Service II 

load combination.   
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As stated previously for the Service limit state check of Section G2-1, Article 6.10.4.2.2 requires 

that flanges of composite sections satisfy the following: 

 

 Top flange of composite sections:     yfhf FR95.0f       Eq. (6.10.4.2.2-1) 

 

 Bottom flange of composite sections: yfhf FR95.0
2

f
f        Eq. 

(6.10.4.2.2-2) 

 

However, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-1, 

Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 need only be checked for compact sections in positive flexure.  

For sections in negative flexure and noncompact sections in positive flexure, these two equations 

do not control and need not be checked.  Therefore, for Section G2-2, Eqs. 6.10.4.2.2-1 and 

6.10.4.2.2-2 do not need to be checked, and are not checked in this example. 

 

7.8.2 Web Bend-Buckling 

 

With the exception of composite sections in positive flexure in which the web satisfies the 

requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (D/tw ≤ 150), web bend-buckling of all sections 

under the Service II load combination is to be checked as follows: 

 

 crwc Ff          Eq. (6.10.4.2.2-4) 

 

The term fc is the compression-flange stress at the section under consideration due to the Service 

II loads calculated without consideration of flange lateral bending, and Fcrw is the nominal elastic 

bend-buckling resistance for webs determined as specified in Article 6.10.1.9.  Because Section 

G2-2 is a section in negative flexure, Eq. 6.10.4.2.2-4 must be checked. 

 

Determine the nominal web bend-buckling resistance, Fcrw, for Section G2-2 in accordance with 

Article 6.10.1.9.1, as follows:  

 

 
2

w

crw

t

D

k E 0.9
F











         Eq. (6.10.1.9.1-1) 

 

However, Fcrw is not to exceed the smaller of RhFyc and Fyw/0.7.  The bend-buckling coefficient, 

k, is computed as: 

 

 
 2

c D/D

9
k          Eq. (6.10.1.9.1-2) 

 

where: 
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 Dc = depth of the web in compression in the elastic range (in.).  For composite sections, 

Dc is to be determined as specified in Article D6.3.1. 

 

In accordance with Article 6.10.4.2.1, for members with shear connectors provided throughout 

the entire length of the girder that also satisfy Article 6.10.1.7, the concrete deck may be 

assumed to be effective for both positive and negative flexure, provided that the corresponding 

longitudinal stresses in the concrete deck at the section under consideration under the Service II 

loads are smaller than 2fr, where fr is the modulus of rupture of concrete specified in Article 

6.10.1.7.  The requirements of Article 6.10.1.7 related to the minimum one percent longitudinal 

reinforcement required in the concrete deck are satisfied for Section G2-2 in this design example. 

 

 cr 'f24.0f          Article 6.10.1.7 

 

Therefore,  

 

   ksi 0.96040.2422f r   

 

In accordance with Article 6.10.1.1.1d, the longitudinal flexural stresses in the concrete deck due 

to all permanent and transient loads are to be computed using the short-term modular ratio, n.  

The calculated stress on the transformed section is divided by n to obtain the longitudinal stress 

in the concrete deck.  Since the deck is not subjected to noncomposite dead loads, the 

longitudinal stress in the deck at Section G2-2 is due to DC2, DW, and LL+I moments only.  The 

unfactored major-axis bending moments at Section G2-2 are (see Table 4): 

 

 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 

 Composite Dead Load:  MDC2  = -1,923 kip-ft 

 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 

 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 

 

The longitudinal compressive stress in the deck is to be determined in accordance with Article 

6.10.1.1.1d, which allows the permanent and transient load stresses to be computed using the 

short-term section properties (n = 7.56 composite section properties).  Referring to Table 13 of 

the section property calculations, the section modulus to the top of the concrete deck is: 

 

 
3

deck in. 27,132
62.2700.39

833,768
S 


  

 

Calculate the Service II factored longitudinal compressive stress in the deck at this section, 

noting that the concrete deck is not subjected to noncomposite dead loads.  The stress in the 

concrete deck is obtained by dividing the stress acting on the transformed section by the modular 

ration, n. 
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ksi880.012

56.727,132

127,830.12,550-1.00,923)11.00(-
1.0fdeck 







 
  

 

 ksi 0.9602f  ksi0.880f rdeck   

 

Since fdeck is less than 2fr, for this Service limit state check, the flexural stresses in the composite 

section caused by the Service II load may be computed assuming that the concrete deck is 

effective in tension.  Refer to Table 12 and Table 13 for the section properties assuming that the 

concrete deck is effective.  The major-axis bending stresses in the top and bottom flanges for the 

Service II load combination are computed as follows (ft = tension flange, fc = compression 

flange): 

 

For Service II: 

 

 Top Flange: 

 

 ksi22.2412
41,214

,127)81.30(-

19,574

,550)21.00(-

19,574

923),11.00(-

10,057

5,426)11.00(-
1.0f t 








  

 

 Bottom Flange: 

 

 ksi10.3012
13,390

,127)81.30(-

12,562

,550)21.00(-

12,562

923),11.00(-

11,316

5,426)11.00(-
1.0f c 








  

 

In order to compute Fcrw, it is first necessary to determine Dc, the depth of the web in 

compression, in accordance with Eq. D6.3.1-1, as required in Article D6.3.1 for composite 

sections in negative flexure whenever the deck is considered effective in tension at the service 

limit state: 

 

 0td
ff

f
D fc

tc

c

c 

















       Eq. (D6.3.1-1) 

 

where: 

 

 fc = sum of the compression flange stresses caused by DC1, DC2, DW, and LL+I; 

acting on their respective sections (ksi).  Flange lateral bending is disregarded. 

 ft = sum of the tension flange stresses caused by DC1, DC2, DW, and LL+I; acting on 

their respective sections (ksi).  Flange lateral bending is disregarded. 

 d = depth of steel section (in.) 

 tfc = thickness of compression flange (in.) 

 

Therefore: 
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   0  in. 44.221.5082.50
24.2230.10

30.10)(
Dc 


















   

 

However, the depth of the web in compression, Dc, should be taken along the inclined web for 

computing the web bend-buckling resistance.  Therefore: 

 

 
 

 in. 45.58
14.04 cos

44.22
Dci 


   

 

Compute the bend-buckling coefficient, k: 

 

 
   

00.28
240.80/58.45

9

2D/cD

9
k          

 

Therefore, the nominal web bend-buckling resistance, Fcrw, is computed as: 

 

 
     ksi 50.0/0.7ywF,ycFhRmin  ksi 77.53

2

0.5625

80.40

28.00 29,000 0.9

2

wt

D

k E 0.9
crwF 


























  

 

Verify Eq. (6.10.4.2.2-4): 

 

 ksi 77.53crwFksi 30.10cf    OK (Ratio = 0.841) 

 

7.8.3 Concrete Deck (Article 6.10.1.7) 

 

Article 6.10.1.7 requires the minimum one-percent longitudinal reinforcement in the concrete 

deck wherever the longitudinal tensile stress in the deck due to the factored construction loads or 

due to the Service II load combination exceeds fr.  This check is illustrated for the negative 

moment region in Example 4. 

 

7.9 Girder Check: Section G2-2, Fatigue Limit State (Article 6.11.5)  

 

Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder flexural members 

must be investigated for fatigue as specified in Article 6.6.1.  The Fatigue I load combination 

specified in Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4 are employed for 

checking load-induced fatigue at Section G2-2.   

 

At Section G2-2, it is necessary to check the top flange for the fatigue limit state for major-axis 

bending.  The base metal at the transverse stiffener weld terminations and internal cross frame 

connection plate welds at locations subject to a net tensile stress must be checked as a Category 

C′ fatigue detail (reference Table 6.6.1.2.3-1).  Additional consideration must be given to cross-

section distortion stresses, as discussed in more detail later in this section. 
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According to Table 3.6.2.1-1, the dynamic load allowance for fatigue loads is 15%.  Centrifugal 

force effects are considered and included in the fatigue moments.  As discussed previously, the 

75-year single lane ADTT is assumed to be 1,000 trucks per day. 

 

According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n.  In 

accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 

1.0 for the fatigue limit state. 

 

    nFf          Eq. (6.6.1.2.2-1) 

 

From Table 6.6.1.2.3-2, the 75-year (ADTT)SL equivalent to infinite fatigue life for a Category 

C′ fatigue detail is 745 trucks per day.  Therefore, since the assumed (ADTT)SL for this design 

example is 1,000 trucks per day, the detail must be checked for infinite fatigue life using the 

Fatigue I load combination.  Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite 

fatigue life is equal to the constant-amplitude fatigue threshold: 

 

    THn FF         Eq. (6.6.1.2.5-1) 

 

where (ΔF)TH is the constant-amplitude fatigue threshold and is taken from Table 6.6.1.2.5-3.  

For a Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 

 

    ksi 12.0ΔF n   

 

As shown in Table 4 the unfactored negative and positive moments due to fatigue, including the 

15 percent dynamic load allowance, at Section G2-2 are -1,384 kip-ft and 256 kip-ft, 

respectively.   

 

In accordance with Article 6.6.1.2.1, for flexural members that utilize shear connectors 

throughout the entire length that also have concrete deck reinforcement satisfying the provisions 

of Article 6.10.1.7, it is permissible to compute the flexural stresses and stress ranges assuming 

the concrete deck to be effective for both positive and negative flexure at the fatigue limit state.   

 

As required by Articles 6.10.10.1 and 6.11.10, shear connectors are necessary along the entire 

length of horizontally curved tub girder bridges.  Also, earlier calculations in this design example 

show that the deck reinforcement is in compliance with Article 6.10.1.7.  Therefore, the concrete 

deck is assumed effective in computing the major-axis bending stresses for the fatigue limit state 

at Section G2-2.  The short-term composite section properties (n = 7.56) used to compute the 

stress at the top of the web (bottom of the top flange) are: 

 

 INA(n) = 833,768 in.
4
 

 

 dTOP OF WEB = dTOP OF STEEL – tf_TOP FLANGE = 20.23 in. – 3.00 in. = 17.23 in. 
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As specified in Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.5. The 

factored stress range at the top of the web, without consideration of the flange lateral bending 

stress and distortional longitudinal warping stress since the top flange is continuously braced by 

the concrete deck, is computed as follows: 

 

    
   

  ok  ksi12.0Fksi 41.0
833,768

17.2312652384,1
1.5Δfγ  TH 












 
    

(Ratio = 0.034) 

 

7.9.1 Cross-section Distortion Stresses 

 

As stated previously for the fatigue limit state check of Section G2-1, additional requirements are 

placed on computing stresses due to fatigue loads for tub sections.  In particular, Article 6.11.5 

requires the consideration of longitudinal warping stresses and transverse bending stresses due to 

cross-section distortion in tub sections.  When a tub section is subjected to torsion, the cross-

section becomes distorted, resulting in these secondary stresses. 

 

In accordance with Article 6.11.5, the stress range due to longitudinal warping should be 

considered when investigating the fatigue resistance of the base metal at all details in the tub 

section.  For simplicity, the longitudinal warping stresses are added to the longitudinal major-

axis bending stresses. 

 

Also, as specified in Article 6.11.5, the stress range due to the transverse bending stresses is to be 

considered in the base metal adjacent to the termination of fillet welds connecting transverse 

elements to webs and box flanges.  The transverse bending stresses are considered separately 

from the longitudinal warping stresses.  Article C6.11.5 states that as a result of the transverse 

bending, a stress concentration occurs at the termination of the fillet welds connecting transverse 

elements to webs and box flanges.  The fatigue resistance of this detail, when subject to 

transverse bending, is not currently quantified but is anticipated to be as low as a Category E 

detail.   

 

Calculations to determine the stress range from longitudinal warping and transverse bending can 

be carried out using the beam-on-elastic-foundation (BEF) analogy presented by Wright and 

Abdel-Samad [3].  The Designers Guide to Box Girder Bridges by Bethlehem Steel Corporation 

[11] also presents the method developed by Wright and Abdel-Samad to estimate the transverse 

bending stresses using the BEF analogy.  In this method, the moment in the BEF is analogous to 

the longitudinal warping stress and the deflection of the BEF is analogous to the transverse 

bending stress.   

 

The BEF analogy for computing the distortional stresses is demonstrated for Section G2-2 in the 

calculations that follow.  Equation and figure references relate to those shown in the Designers 

Guide to Box Girder Bridges (DGBGB) [11].  The calculations that follow are intended to 

simply illustrate the procedure for computing these stresses using the BEF analogy.  At Section 

G2-2, the bottom flange is not subject to a net tensile stress by inspection, and the top flanges are 

continuously braced by the concrete deck.  Thus, the effect of the distortional stresses may be 

ignored at Section G2-2 for fatigue.  However, in an actual design of a horizontally curved tub 
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girder, these stresses should be considered in the base metal adjacent to welded details at or near 

the bottom flange at locations where the flange is subject to a net tensile stress. 

 

From a separate analysis (all results not shown) the unfactored negative and positive torques due 

to fatigue loading, including the 15 percent dynamic load allowance, at Section G2-2 are -309 

kip-ft and 339 kip-ft, respectively.  The torque fatigue range is a result of placing the fatigue 

truck in two different positions on the bridge but on opposite sides of the tub section.  Also, it is 

assumed that this range is larger than the range produced by a single passage of the fatigue truck 

for this design example.  As indicated in Article 6.11.5, a factor of 0.75 can be applied to this 

torque range to account for the fact that two separate positions of the fatigue trick are required to 

cause the critical torque range (note: the preceding has since been superseded in the 2015 

Interims to the 7
th

 Edition – refer to Articles C6.11.5 and C6.6.1.2.1 regarding the computation 

of a more realistic fatigue torque range at transverse bracing members in tub girders in lieu of 

applying the 0.75 factor.  The 0.75 factor will continue to be applied in this example).  Therefore 

applying this 0.75 factor, and the load factor for the Fatigue I load combination ( = 1.5), the 

factored fatigue torque range, TFAT, is: 

 

     ft-kip 7293393091.50.75TFAT   

 

Other required constants that will be used in the calculations that follow are: 

 

 INA(n)  = 833,768 in.
4
. 

 tc = web thickness = 0.5625 in. 

 tb = bottom flange thickness = 1.50 in. 

 ta = slab thickness = 9.5 in. 

 Ec = 3,834 ksi 

 Es = 29,000 ksi 

 c = Possion’s ratio for concrete = 0.20 (Article 5.4.2.5) 

 s = Possion’s ratio for steel = 0.30 

 ℓ = cross frame spacing = 16.30 ft = 196 in. 

 Transverse stiffener spacing at Section G2-2 = 62 in. 

 Transverse stiffener is 0.5 in. x 5.5 in. 

 

Calculate the transverse flexural rigidities, Da and Db, of the concrete deck and the bottom box 

flange, respectively. 

 

 
 

  
  in.

in.k
 285,345

0.20112

9.53,834
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    DGBGB Eq. (A3a) 
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in.k
 963,8

0.30112

1.5029,000
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    DGBGB Eq. (A3b) 

 

Article 6.11.1.1 permits transverse stiffeners to be considered effective in resisting transverse 

bending.  Therefore, the transverse flexural rigidity of the web, Dc, is computed considering the 
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stiffness of the transverse stiffener. Calculate the effective width of the web plate, do, that acts 

with the transverse stiffener (see Figure 14): 

 

 

 2

s

o

1
h

d
6.5

h

d
6.5tanhd

d












        DGBGB Eq. (A4) 

 

where: 

 

 d  =  spacing of transverse stiffeners = 62 in. 

 h =  web plate depth, along the inclined web = 80.40 in. 

 
Figure 14  Effective Width of Web Plate, do, Acting with the Transverse Stiffener 

 

 

Therefore,  

 

 

 

 
in. 15.8

0.301
80.40

62
 5.6

80.40
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 5.6 tanh62
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2
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The transverse flexural rigidity of the web, Dc, considering the stiffness of the transverse 

stiffener is computed as: 

 

 
d

IE
D ss

c          DGBGB Eq. (A3d) 

 

where: 

 

 Is  =  moment of inertia of the effective stiffened web plate for transverse bending, 

including the transverse stiffener. 
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To compute Is, first compute the location of the neutral axis of the effective section from the 

outer web face: 

 

 Area of stiffener  =  (5.5) (0.5)   =  2.75 in.
2
 

 Area of effective web =  (15.8) (0.5625) =  8.89 in.
2
 

 Total Area     =  11.64 in.
2
 

 

 in. 1.0
11.64

2

0.5625
8.89

2

5.5
0.56252.75

N.A. 




















   

 

Calculate the moment of inertia, Is: 

 

      3

2

3

s 5625.08.15
12

1
0.15625.0

2

5.5
75.25.55.0
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1
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2

0.1
2

5625.0
89.8 








  

 
4

s in. 26.5I   

 

Therefore, 

 

 
  

in.

in.-kip
 12,395

62

26.529,000
D

2

c     

 

The stiffness of the transverse stiffener is assumed to be distributed evenly along the web. 

 

Compute the compatibility shear, v, at the center of the bottom (box) flange for unit loads 

applied at the top corners of a box section of a unit length: 
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v     DGBGB Eq. (A2) 

 

where a, b, and c are dimensional parameters of the tub section: 

 

 a  =  distance between centerline of webs at top of tub section = 120 in. 

 b =  distance between centerline of webs at bottom of tub section = 81 in. 

 c = height of web, along the incline = 80.40 in. 
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Compute the box distortion per kip of load, 1, assuming no cross-bracing or diaphragms are 

present: 
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1   DGBGB Eq. (A1) 
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The BEF stiffness parameter, , is a measure of the torsional stiffness of the beam, and is 

analogous to the beam-foundation parameter in the BEF derivation.  The BEF stiffness 

parameter, , is calculated as: 

 

 
4

1

1c δ I E

1
β 










        DGBGB Eq. (A5) 

 

   
1

4

1

in. 0.00327
0.36833,76829,000

1
β 








    

 

Multiplying the BEF stiffness parameter by the length between internal cross frames yields: 

 

   64.00.1960.00327 β     

 

The transverse bending stress range at the top or bottom corners of the tub section may be 

determined as: 

 

 rangedtt T 
2a

1
 β F Cσ         DGBGB Eq. (A8) 

 

where: 

 

 Ct  =  BEF factor for determining the transverse distortional bending stress from 

DGBGB Figure A6 (see Figure 15) 
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 Trange =  range of concentrated torque = TFAT (computed previously) 

 a = distance between webs at the top of tub section 

 Fd  = 
S2

bv
  for the bottom corner of tub section [DGBGB Eq. (A9a)] 

  = 


















v

ba

b

S2

a
 for top corner of tub section [DGBGB Eq. (A9b)] 

 S = section modulus of the transverse member (per inch)  

 

Calculate the section modulus, S, per unit length of the stiffened portion of the web.  S is taken at 

the top of the transverse member.  In the following equation, the section modulus is divided by 

the stiffener spacing, d; and the distance from neutral axis of the stiffened web to the tip of the 

stiffener is cS. 

 

 
in.

in.
 0.084

62

1

1.00.56255.5

26.5
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Calculate the section modulus, S, per unit length of the unstiffened portion of the web taken at 

the mid-thickness of the web.  In the equation that follows, bUS is taken as a unit 1.0 inch, so that 

the section modulus is computed per unit length. 

 

 
  

in.

in.
 0.0527
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5625.00.1
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Compute the term Fd at the bottom corner of the tub section for the stiffened and unstiffened 

portions of the web: 

 

Stiffened Web: 
  
 

1-

d in.  106
0.0842

0.2281

2S

bv
F   

 

Unstiffened Web: 
  
 

1-

d in.  169
0.05272

0.2281

2S

bv
F   

 

Compute the term Fd at the top corner of the tub section for the stiffened and unstiffened portions 

of the web: 

 

Stiffened Web: 
 

1-

d in.  1310.22
81120

81

0.0842

120
v

ba

b

2S

a
F 






































  

 

Unstiffened Web: 
 

1-

d in.  2080.22
81120

81

0.05272

120
v

ba

b

2S

a
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It is conservatively assumed that the transverse stiffeners are not attached to the top or bottom 

flanges.  Therefore, Fd is equal to 208 in.
-1

, as the larger value governs so as to produce a larger 

transverse bending stress. 

 

In order to read Ct from Figure 15 (DGBGB Figure A6), the dimensionless ratio, q, must be 

calculated.  The quantity q represents the ratio of cross frame / diaphragm brace stiffness to the 

tub section stiffness per unit length and is computed as: 

 

 
2

b

1b

bb δ 
δ  L

A E
q 











       DGBGB Eq. (A6) 

 

where: 

 

 Eb  =  Young’s modulus of the internal cross frame / diaphragm material 

 Ab =  cross-sectional area of one cross frame / diaphragm bracing member 

 ℓ  =  internal cross frame / diaphragm spacing 

 Lb =  length of cross frame / diaphragm bracing member 

 b = deformation of the bracing member due to the applied torque and is calculated in 

accordance with DGBGB Eq. (A7) 

  =  1
2

h2

ba
1

b

a
12










 












      DGBGB Eq. (A7) 

 h = vertical web depth of the tub section. 

 

First, compute b: 
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 1.100.36
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120
12

δ
2

2
b 








 












   

 

Calculate the cross frame stiffness ratio, q.  The area of one diagonal, Ab, in the internal cross 

frame is assumed to be equal to 5.0 in.
2
, and the length of the diagonal, Lb, is equal to 87.9 in. 

 

 
  

   
  3.281.10 

0.3619687.9

5.029,000
q

2









  

 

From Figure 15, for q = 28.3 and ℓ = 0.64, Ct is approximately equal to 0.12.  Therefore, the 

transverse bending stress range at the top or bottom corners of the tub section is: 
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   ksi 2.9812729 
1202

1
 0.00327 208 0.12σ t     

 

 
Figure 15  Concentrated Torque at Mid-panel on Continuous Beam - Distortional Bending 

Stress at Load (DGBGB Figure A6 [11]) 

 

As discussed previously, the base metal adjacent to the termination of fillet welds connecting 

transverse elements to webs and box flanges is assumed to be a Category E detail for transverse 

bending. Thus, the transverse bending stress range would be compared to the appropriate 

nominal fatigue resistance for a Category E detail computed according to the provisions of 

Article 6.6.1.2.5.  

 

The fatigue longitudinal warping stress range at the top and bottom corners of the tub section due 

to cross section distortion can be computed as follows: 

   

 range

w

dw T 
a β I

y C
σ         DGBGB Eq. (A10) 

 

where: 

 

 Cw  =  BEF factor for determining the distortional longitudinal stress from DGBGB 

Figure A9 (see Figure 16) 

 y = distance along the transverse vertical axis of the tub section from the neutral axis 

to the point under consideration 

 

Obtain Cw from the graph shown in Figure 16, where q = 28.3 and ℓ = 0.64.  Cw is 

approximately 0.55.  Therefore, using the short-term composite section properties with the 
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transformed deck at Section G2-2 (see Table 13), the factored distortional longitudinal stresses 

are: 

 

 
  

   
   ksi 0.2512729 

120 0.00327 833,768

17.23 0.55
σ TOP dw_   

 

 
  

   
   ksi 0.8912729 

120 0.00327 833,768

60.77 0.55
σ BOT dw_   

 

 
Figure 16  Concentrated Torque at Mid-panel on Continuous Beam – Normal Distortional 

Warping Stress at Mid-panel (DGBGB Table A9 [11]) 

 

The distortional longitudinal warping stress range at the bottom of the tub section would be 

considered in checking the fatigue resistance of the base metal at the connection plate welds to 

the bottom flange at locations where the flange is subject to a net tensile stress.  The distortional 

longitudinal warping stress range would simply be added to the major-axis bending stress range 

at the detail.  The distortional longitudinal warping stress at the top of the tub section may be 

ignored since the top flanges are continuously braced by the concrete deck. 
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7.10 Girder Check: Section G2-2, Strength Limit State (Article 6.11.6)  

 

7.10.1 Flexure (Article 6.11.6.2) 

 

For composite sections in negative flexure at the strength limit state, Article 6.11.6.2.3 directs 

the Engineer to Article 6.11.8.  Furthermore, Article 6.11.6.2.3 states that the provisions of 

Appendix A6 do not apply to tub girders, nor is redistribution of negative moment in accordance 

with Appendix B6 permitted. 

 

At the strength limit state, the top flanges in tension are continuously braced by the concrete 

deck, and are to satisfy: 

 

 ntfbu Ff          Eq. (6.11.8.1.2-1) 

 

where Fnt is the nominal flexural resistance of the tension flanges determined as specified in 

Article 6.11.8.3. 

 

At the strength limit state, tub flanges (bottom flanges) in compression are to satisfy: 

 

 ncfbu Ff          Eq. (6.11.8.1.1-1) 

 

where Fnc is the nominal flexural resistance of the bottom flange determined as specified in 

Article 6.11.8.2. 

 

The unfactored bending moments at Section G2-2 from the analysis are shown below (see Table 

4).  The live load moment includes the centrifugal force and dynamic load allowance effects. 

 

 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 

 Composite Dead Load:  MDC2  = -1,923 kip-ft 

 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 

 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 

 

Compute the factored flange flexural stresses at Section G2-2 for the Strength I load 

combination, without consideration of flange lateral bending.  For loads applied to the composite 

section, cracked section properties are used to compute the major-axis bending stresses at the 

strength limit state in accordance with Article 4.5.2.2.  Shear lag need not be considered since the 

box flange (bottom flange) does not exceed one-fifth of the span of the bridge (Article 

C6.11.1.1).  Therefore, the major-axis bending stress is assumed to be uniform across the flange 

because shear lag need not be considered.  Also, the longitudinal warping stress due to cross- 

section distortion does not need to be considered at the strength limit state, in accordance with 

Article 6.11.1.1.  As discussed previously, the  factor is taken equal to 1.0 in this example.  

Therefore: 

 

For Strength I: 

 

 Top Flange: 
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 ksi41.4412
11,862

8,127)1.75(

10,654

2,550)1.5(

10,654

1,9232)1.25(

10,057

15,426)1.25(
1.0f bu 







 









  

 

 

 

 

 Bottom Flange: 

 

 ksi60.4112
11,674

8,127)1.75(

11,447

2,550)1.5(

11,447

1,923)1.25(

11,316

15,426)1.25(
1.0f bu 







 









  

 

In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear are 

to be considered for horizontally curved bridges.  Therefore, compute the factored St. Venant 

torsional shear stress, fv, in the bottom flange for the Strength I load combination.  fv is 

determined by dividing the St. Venant torsional shear flow [ f = T/(2Ao) ] by the thickness of the 

bottom flange: 

 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.
3
) 

 tf  =  bottom flange thickness (in.) 

 

The unfactored torques at Section G2-2 obtained from the analysis are shown below (see Table 

6).  The live load torque includes the centrifugal force and dynamic load allowance effects.  The 

positive torques are used in the calculations that follow as the total of the positive torques 

governs over the absolute total of the negative torques. 

 

 Noncomposite Dead Load:  TDC1  = 36 kip-ft + (-33 kip-ft) = 3 kip-ft 

 Composite Dead Load:  TDC2  = 192 kip-ft 

 Future Wearing Surface Dead Load: TDW = 255 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 980 kip-ft 

 

Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 

computed for the noncomposite section.  Since the top lateral bracing in this example is attached 

to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 

of the top and bottom flanges.  Furthermore, for torques applied to the composite section, Ao is to 

be computed for the composite section using the depth from the mid-thickness of the bottom 

flange to the mid-thickness of the concrete deck.  In this example, the height of the deck haunch 

is considered.   
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Compute the enclosed area of the noncomposite tub section, Ao_NC. 

 

 
    2

o_NC in. 065,8
2

1.50
78

2

3.00

2

1283120
A 











  

 

Compute the enclosed area of the composite tub section, Ao_C. 

 

 
    2

o_C in. 8,794
2

9.50
4.00

2

50.1
78

2

1283120
A 











  

 

Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 

noncomposite section: 

 

  
   
  

ksi 0.002
1.508,065 2

1231.25
1.0f v_NC   

 

Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 

composite section: 

 

  
          

  
ksi 063.1

1.508,794 2

1298075.125550.11921.25
1.0f v_C 


  

 

Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 

 

 ksi 1.071.063002.0f v   

 

According to Article 6.11.1.1, the factored St. Venant torsional shear stress in box flanges 

(bottom flange in this tub girder) at the strength limit state is not to exceed the factored torsional 

shear resistance of the flange, Fvr, taken as: 

 

 
3

F
75.0F

yf

vvr         Eq. (6.11.1.1-1) 

 

where: 

 

 v  = resistance factor for shear specified in Article 6.5.4.2 

 

Therefore: 

  

   ksi 1.07f    ksi 21.65
3

50
1.00.75F vvr   OK 
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7.10.2 Top Flange  

 

Calculate the nominal flexural resistance of the top flanges in tension, Fnt, in accordance with 

Article 6.11.8.3. 

 

 ythnt FRF          Eq. (6.11.8.3-1) 

 

For a homogenous girder, Rh, is equal to 1.0 (Article 6.10.1.10.1).  Therefore: 

 

    ksi 50.050.01.0Fnt    

 

For Strength I: 

 

 ntfbu Ff          Eq. (6.11.8.1.2-1) 

 

      ksi 50.0050.001.0Fksi 41.44f ntfbu 
 

OK (Ratio = 0.888) 

 

7.10.3 Bottom Flange  

 

Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 

with Article 6.11.8.2.  The bottom flange is longitudinally stiffened at this location, with a single 

WT 8x28.5 stiffener placed at the center of the bottom flange. 

 

 
fc

fc

f
t

b
         Eq. (6.11.8.2.2-8) 

 

where, in this case: 

 

 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners 

or the distance from a web to the nearest longitudinal flange stiffener. 

 

Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 

longitudinal stiffener to the centerline of the web. 

 

 00.27
1.50

2

81

λ f 










  

 

Calculate the first limiting slenderness ratio: 

 

 



yc

p
F

Ek
57.0λ        Eq. (6.11.8.2.2-9) 
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where k is computed as specified in Article 6.11.8.2.3 for longitudinally stiffened flanges, and  

is computed in accordance with Article 6.11.8.2.2. 

 

As specified in Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the 

plate-buckling coefficient for uniform normal stress, k, is to be taken as: 

 

 
3

1

3

fc

S

 tw

I 8
k














         Eq. (6.11.8.2.3-1) 

 

and: 

 

2

yc

v

F

f
31Δ














        Eq. (6.11.8.2.2-11) 

 

where: 

 

 fv  =  factored St. Venant torsional shear stress in the flange (ksi) 

 n =  number of equally spaced longitudinal flange stiffeners 

 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 

 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener (in.
4
) 

 

Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 

stiffness to cross-sectional area.  For the WT 8x28.5 stiffener, Ix = 48.7 in.
4
, A = 8.39 in.

2
, and 

the elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 

 

    42

S in. 379.66.288.3948.7I   

        

Compute the plate-buckling coefficient k: 

 

 

 
0.481.2

1.50 
2

81

379.6 8
k

3

1

3





























  

 

Compute the Δ term: 

 

 999.0
50.0

1.07
31Δ

2









  

 

Compute p: 



 

100 

 

 

 
  
  

02.23
999.00.50

81.229,000
0.57λp   

 

Since f is greater than 23.02 (f = 27.00), it is necessary to compute the second limiting 

slenderness ratio: 

 

yr

r
F

Ek
95.0λ         Eq. (6.11.8.2.2-10) 

 

where: 

 

   ywycyr FF0.3ΔF        Eq. (6.11.8.2.2-13) 

 

    ksi 50Fksi 35.0500.30.999F ywyr   

 

Compute r: 

 

 
 

84.45
35.0

)81.2(29,000
95.0λ r   

 

Since p  <  f  = 27.00  ≤  r, then the nominal axial compression buckling resistance of the 

flange under compression alone, Fcb, is calculated as follows: 

   

 







































 


pr

pf

h

ychbcb
λλ

λλ

R

0.3Δ
ΔΔFRRF    Eq. (6.11.8.2.2-3) 

 

The hybrid factor, Rh, is equal to 1.0, as specified in Article 6.10.1.10.1.   

 

Determine the web load-shedding factor, Rb.  First, compute the depth of the web in 

compression, Dc, in accordance with the provisions of Article D6.3.1.  These provisions state that 

for composite sections in negative flexure at the strength limit state, Dc is to be computed for the 

section consisting of the steel girder plus the longitudinal deck reinforcement.  For this example, 

Dc is calculated using the short-term (n) section property computations for the steel section plus 

the longitudinal reinforcement shown in Table 15.  As indicated in Article C6.11.8.2.2, in 

calculating Rb for a tub section, use one-half of the effective box (bottom) flange width in 

conjunction with one top flange and a single web. 

 

Therefore, compute Dc along the inclined web: 

 

   in. 41.31
4

14
 1.5041.58D

2

2

c 
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According to the provisions of Article 6.10.1.10.2: 

 

 
 

9.146
5625.0

31.412

t

D2

w

c        Eq. (6.10.1.10.2-2) 

 

 3.137
50

000,29
7.5

F

E
7.5

yc

rw      Eq. (6.10.1.10.2-4) 

 

Since 
rw

w

c

t

2D
 , calculate Rb as follows: 

 

 1.0λ
t

2D

300a1200

a
1R rw

w

c

wc

wc

b 






















    Eq. (6.10.1.10.2-3) 

 

where, 

 

 
  
  

765.0
50.120.81

5625.031.412

tb

t2D
a

fcfc

wc
wc      Eq. (6.10.1.10.2-5) 

 

Therefore, 

 

 
 

 
1.0995.03.371

0.5625

41.312

0.7653001200

0.765
1Rb 



















  

 

Compute the nominal axial compression buckling resistance: 

 

     














 







 


23.02-45.84

02.2300.27

1.0

0.3999.0
999.0999.0500.1995.0Fcb  

 

 ksi 47.10Fcb   

 

Compute the nominal flexural resistance of the compression flange: 

 

 

2

cvv

v
cbnc

F

f
-1FF 











      Eq. (6.11.8.2.2-1) 

 

where: 

 

 Fcv = nominal shear buckling resistance of the flange under shear alone (ksi) 
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In order to compute Fcv, first calculate ks, the plate-buckling coefficient for shear stress in 

accordance with Article 6.11.8.2.3: 

 

 
34.5

1n

 tw

I
84.234.5

k
2

3

1

3

fc

S

S 

















      Eq. (6.11.8.2.3-3) 

 

 
  

 
34.533.2

11

50.15.40

379.6
84.234.5

k
2

3

1

3

S 












  

 

As specified in Article 6.11.8.2.2, if 
yc

s
f

F

Ek
1.12λ  , then: 

 

 Fcv = 0.58 Fyc      Eq. (6.11.8.2.2-5) 

  

 
  

17.41
50

33.2000,29
12.100.27λ f   

 

Therefore: 

 

   ksi 29.05058.0Fcv   

  

Compute Fnc: 

 

 
  

ksi 47.07
0.290.1

1.07
-110.47F

2

nc 







  

 

Checking compliance with Eq. 6.11.8.1.1-1: 

 

 ncfbu Ff          Eq. (6.11.8.1.1-1) 

 

For Strength I: 

 

    ksi 47.07  47.0700.1F  ksi 1.604-f ncfbu    OK (Ratio = 0.884) 

 

Article C6.11.8.1.1 states that in general, bottom box flanges at interior pier sections are 

subjected to biaxial stresses due to major-axis bending of the tub section and major-axis bending 
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of the internal diaphragm over the bearing sole plate.  The bottom flange is also subject to shear 

stresses due to the internal diaphragm vertical shear and, in cases where it needs to be 

considered, the St. Venant torsional shear.  For cases where the shear stresses and/or bending of 

the internal diaphragm are deemed significant, Article C6.11.8.1.1 suggests that the following 

equation be used to check the combined stress state in the box flange at the strength limit state: 

 

   ychbf

2

vd

2

bybybu

2

bu FRRff3ffff     Eq. (C6.11.8.1.1-1) 

 

where: 

 

 fbu  =  factored longitudinal stress at the section under consideration calculated without 

consideration of longitudinal warping (ksi) 

 fby =  factored stress in the flange caused by major-axis bending of the internal 

diaphragm over the bearing sole plate (ksi) 

 fd = factored shear stress in the flange caused by the internal diaphragm vertical shear 

(ksi) 

 fv =  factored St. Venant torsional shear stress in the flange (ksi) 

 Rb = web load-shedding factor determined as specified in Article 6.10.1.10.2 

 Rh = hybrid factor determined as specified in Article 6.10.1.10.1 

 

In this example, each tub girder is supported on two bearings at each support.  Therefore, the 

bottom flange bending stresses due to major-axis bending of the diaphragm over the bearing sole 

plates are relatively small and are neglected in this example (fby = 0.0 ksi).  The effect of these 

forces in a tub section supported on a single bearing is likely to be more significant and should 

be considered.  As specified in Article C6.11.8.1.1 an effective flange width of 6 times the 

thickness of the tub girder bottom flange may be considered effective with the internal 

diaphragm for computing the stress in the box flange (bottom flange in this tub girder) caused by 

major-axis bending of the internal diaphragm over the bearing sole plate.   Furthermore, if an 

access hole is provided within the internal diaphragm, the hole should be considered in 

calculating the section properties of the effective diaphragm section. 

 

From previous calculations, the total factored St. Venant torsional shear stress in the bottom 

flange, fv, is equal to 1.07 ksi. 

 

To estimate the shear stress in the bottom flange due to the internal diaphragm shear, a 1 in. by 

12 in. top flange for the diaphragm is assumed.  The diaphragm web is assumed to be 78 inches 

deep and 1 inch thick, and for simplicity in this example, an access hole is assumed not to be 

provided in the web.  As specified in Article C6.11.8.1.1, a box flange width equal to 6 times its 

thickness may be considered effective with the internal diaphragm.  Therefore: 

 

   in. 9.01.50 6bbf_EFF   

 

Therefore, the effective bottom flange of the internal diaphragm is 9.0 inches wide and has a 

thickness of 1.50 inches.  The thickness of the effective bottom flange of the internal diaphragm 

is the same as the thickness of the tub girder bottom flange. 
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From separate calculations not shown here, the moment of inertia of the effective internal 

diaphragm is 79,565 in.
4
, and the neutral axis is located 39.89 in. above the bottom of the bottom 

flange.  Calculations associated with the design of the internal diaphragm, shown later, indicate 

that the total factored vertical component of the diaphragm shear is 1,406 kips.  The shear stress 

in the tub girder bottom flange, fd, caused by the internal diaphragm vertical shear due to 

factored loads is approximated as: 

 

 
fc

d
 tI

Q V
f          Eq. (C6.11.8.1.1-2) 

 

where: 

 

 V  =  vertical shear in the internal diaphragm due to flexure plus St. Venant torsion 

(kip) 

 Q =  first moment of inertia of one-half the effective box-flange area about the neutral 

axis of the effective internal diaphragm (in.
3
) 

 I = moment of inertia of the effective internal diaphragm section (in.
4
) 

 

The first moment of inertia of one-half the effective box-flange area about the neutral axis of the 

effective internal diaphragm, Q, is computed as: 

 

    3in. 2.642
2

50.1
89.3950.10.9

2

1
Q 








  

 

Therefore, 

 

 
  
  

ksi 3.11
1.5079,565

264.21,406

 tI

Q V
f

fc

d   

 

Only one-half of the effective flange area is used in computing the first moment of inertia, Q,  

used in this calculation since the shear stress in the flange is a maximum at the diaphragm and 

assumed to be zero at each edge of the effective flange (with a linear distribution assumed in-

between). 

 

The factored longitudinal stress in the tub girder bottom flange, fbu, resulting from major-axis 

bending was computed previously as -41.60 ksi.  Also, Rh is equal to 1.0, and Rb was computed 

in previous computations and is equal to 0.995. 

 

Checking compliance with Eq. C6.11.8.1.1-1: 

 

          ksi 42.2307.111.330060.4160.41
222
  

 

     ksi 49.75501.00.9951.0FRR42.23ksi ychbf   OK (Ratio = 0.849) 
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7.10.3.1 Cross-section Distortion Stresses 

 

In accordance with Article 6.11.1.1, transverse bending stress due to cross-section distortion are 

to be considered at the strength limit state.  The transverse bending stresses due to factored loads 

are not to exceed 20.0 ksi at the strength limit state.  Longitudinal warping stresses due to cross-

section distortion may be ignored at the strength limit state. 

 

As shown previously in the fatigue computations for Section G2-2, the transverse bending stress 

range at the top or bottom corners of the tub section may be determined as: 

 

 T 
2a

1
 β F Cσ dtt         DGBGB Eq. (A8) 

 

The same values computed under the fatigue computations may be used at the strength limit 

state, thus Ct is equal to 0.12, Fd is equal to 208 in.
-1

,  is equal to 0.00327 in.
-1

, and a is equal to 

120 in.  T represents the total factored concentrated torque, and is computed as follows: 

 

For Strength I: 

 

         ft-kip 2,3419801.752551.501921.2531.25T   

  

Therefore, the factored transverse bending stress due to cross-section distortion is computed as: 

 

    
 

   ksi 20.0ksi 55.912341,2 
1202

1
 0.00327 208 0.12σ t   OK  (Ratio = 0.478) 

 

7.10.4 Shear (Article 6.11.6.3) 

 

Article 6.11.6.3 invokes the provision of Article 6.11.9 to determine the shear resistance at the 

strength limit state.  Article 6.11.9 further directs the Engineer to the provision of Article 6.10.9 

for determining the factored shear resistance of a single web.  For the case of inclined webs, D, is 

to be taken as the depth of the web measured along the slope.  The factored shear load in the 

inclined web is to be taken as: 

 

 
 θ cos

V
V u

ui          Eq. (6.11.9-1) 

  

where, Vu is the factored shear on one inclined web, and  is the angle of inclination of the web 

plate.  For tub sections, especially those in horizontally curved bridges, St. Venant torsional 

shear must be considered in the design of the webs.  The total shear in one web is greater than 

the shear in the other web at the same section since the torsional shear is of opposite sign in the 

two webs.  The critical shear should be the maximum combination of factored shear due to 
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major-axis bending and the St. Venant torsional shear.  For practicality, both webs are designed 

for the critical shear. 

 

At the strength limit state, webs must satisfy the following: 

 

 nvu VV          Eq. (6.10.9.1-1) 

 

where: 

 

 v = resistance factor for shear = 1.0 (Article 6.5.4.2) 

 Vn  =  nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3 

for unstiffened and stiffened webs, respectively (kip) 

 Vu =  Vui = shear in a single web at the section under consideration due to factored loads 

(kip) 

 

The unfactored shears at Section G2-2 obtained from the analysis are shown below (see Table 2).  

The unfactored shears are vertical shears and are the summation of the shears due to major-axis 

bending and St. Venant torsion in the critical web.  The live load moment includes the 

centrifugal force and dynamic load allowance effects.  The positive shears are used in the 

calculations that follow as the total of the positive shears governs over the absolute total of the 

negative shears. 

 

 Noncomposite Dead Load:  VDC1  = 232 kip 

 Composite Dead Load:  VDC2  = 44 kip 

 Future Wearing Surface Dead Load: VDW = 58 kip 

 Live Load (incl. IM and CF): VLL+IM = 160 kip 

 

The  factor is again taken equal to 1.0 in this example at the strength limit state.  The total 

factored shear at the interior pier in the inclined web is: 

 

 
 

 
kips734

14.036cos

1.75(160)1.5(58)44)3221.25(1.0
Vui 




  

 

7.10.4.1 Interior Panel (Article 6.10.9.3.2) 

 

Article 6.10.9.1 stipulates that the transverse stiffener spacing for interior panels without a 

longitudinal stiffener is not to exceed 3D = 3(80.40) = 241.2 inches.  For the first panel on each 

side of the interior support, a transverse stiffener spacing of 62 inches is assumed for this design 

example, satisfying the 3D requirement. 

 

For interior panels of girders with the section along the entire panel proportioned such that: 

 

 
 

5.2
tbtb

Dt2

ftftfcfc

w 


       Eq. (6.10.9.3.2-1) 
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the nominal shear resistance is to be taken as the sum of the shear-buckling resistance and the 

post-buckling resistance due to tension-field action, which is to be computed according to: 

 

 


































2

o

pn

D

d
1

)C1(87.0
CVV       Eq. (6.10.9.3.2-2) 

 

in which: 

 

 wp DtF58.0V
yw

        Eq. (6.10.9.3.2-3) 

 

where: 

 

 do = transverse stiffener spacing (in.) 

 Vn  =  nominal shear resistance of the web panel (kip) 

 Vp =  plastic shear force (kip) 

 C  = ratio of the shear-buckling resistance to the shear yield strength. 

 

According to Article 6.11.9, for box flanges, bfc (in this case) is to be taken as one-half the 

effective flange width between webs in checking Eq. 6.10.9.3.2-1, but not to exceed 18 times the 

thickness of the box flange. Therefore, (81.0/2) = 40.5 in. > 18(1.50) = 27.0 in.  Use bfc = 27.0 in. 

to check Eq. 6.10.9.3.2-1.  For the interior web panel under consideration, check Eq. 6.10.9.3.2-1 

as follows: 

 

 
  

      
5.296.0

00.31850.10.27

5625.040.802



  

 

Therefore, Eq. (6.10.9.3.2-2) is applicable.  First, compute the shear-buckling coefficient, k: 

 

 41.13

40.80

62

5
5

D

d

5
5k

22

o





















     Eq. (6.10.9.3.2-7) 

 

Since: 

 

 5.123
50

41)29,000(13.
1.40

F

Ek
1.40142.9

0.5625

80.4

t

D

yww
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yw

2

w

F

Ek

t

D

57.1
C        Eq. (6.10.9.3.2-6) 

 

 
 

0.598
50

41)29,000(13.

142.9

1.57
C

2









  

 

Vp is the plastic shear force and is calculated as follows: 

 

 wywp  tD F 0.58V         Eq. (6.10.9.3.3-2) 

 

     kips 1,3120.562580.4050.0 0.58Vp   

 

Therefore, 

 

   kips 1,148

80.40

62.0
1

0.598)0.87(1
0.5981,312V

2
n 
































  

 

Checking compliance with Eq. (6.10.9.1-1): 

 

    kips 1,1481,1481.0Vkips 734V nvu   OK  (Ratio = 0.639) 

 

7.11 Bottom Flange Longitudinal Stiffener  

 

A single longitudinal flange stiffener is used on the bottom flange of the tub girders in the 

negative moment regions.  The longitudinal stiffeners are terminated at the bolted field splices at 

each end of field sections 2 and 4.  By terminating the longitudinal stiffener at the bolted field 

splices, it is not necessary to consider fatigue at the terminus of the stiffener.  The bottom flange 

splice plates inside the tub girder must be designed and fabricated to permit the longitudinal 

stiffener to extend to the free edge of the flange, where the longitudinal stress is zero. 

 

A single WT 8x28.5 is utilized for the longitudinal stiffener with the stem welded to the bottom 

flange, and it is placed at the centerline of the bottom flange.  As specified in Article 6.11.11.2, 

longitudinal compression flange stiffeners on tub girder bottom flanges (box flanges) are to be 

equally spaced across the width of the flange.  Furthermore, the yield strength of the longitudinal 

stiffener must not be less than the yield strength of the flanges to which they are attached. 

 

The projecting width, bl, of the longitudinal flange stiffener must satisfy Eq. (6.11.11.2-1): 
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yc

s
F

E
 t0.48b         Eq. (6.11.11.2-1) 

 

where: 

 

 ts = thickness of the projecting longitudinal stiffener element (in.) 

 

In the case of a structural tee, ts is taken as the flange thickness of the structural tee since each 

half-flange would buckle similarly to a single plate connected to the web.  Furthermore, the 

projecting width, bl, of structural tees is to be taken as one-half the width of the tee flange.  

Therefore, 

 

 in. 8.27
50

29,000
(0.715) 0.48b l   

 

 in. 8.27in. 3.56
2

7.12
b l    WT 8x28.5 flange is OK 

 

The moment of inertia, Iℓ, of each stiffener about an axis parallel to the flange and taken at the 

base of the stiffener must satisfy: 

 

  

 

 
3

fc t wψI         Eq. (6.11.11.2-2) 

 

where: 

 

  = 0.125k
3
 for n = 1 

  = 1.120k
3
 for n = 2 

 k = plate buckling coefficient for uniform stress, 1.0 ≤ k ≤ 4.0 

 n = number of equally spaced longitudinal flange stiffeners 

 w = larger of the width of the flange between longitudinal flange stiffeners or the 

distance from a web to the nearest longitudinal flange stiffener (in.) 

 tfc = thickness of the tub girder compression flange (in.) 

 

Calculate the moment of inertia of the stiffener, Iℓ, about the base of the stiffener: 

 

 Iℓ = Io + Ad
2
 = 48.7 + (8.39) (8.22 – 1.94)

2
 = 379.6 in

4
 

 

As specified in Article C6.11.11.2, the actual longitudinal flange stiffener moment of inertia, Is, 

used in determining the plate-buckling coefficient for uniform normal stress, k, from either Eq. 

6.11.8.2.3-1 or Eq. 6.11.8.2.3-2, as applicable, automatically satisfies Eq. 6.11.11.2-2.  

Alternatively, for preliminary sizing of the stiffener for example, a value of k can be assumed in 

lieu of Eq. 6.11.8.2.3-1 or Eq. 6.11.8.2.3-2, but a range of 2.0 to 4.0 should generally apply.  For 

completeness, check Eq. 6.11.11.2-2, where k was previously calculated as 2.81: 
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4334 in. 379.1(1.5)

2

81
)0.125(2.81in. 379.6 








   OK 

 

Since Eq. 6.11.11.2-1 and Eq. 6.11.11.2-2 are satisfied, the WT 8x25 is acceptable for the bottom 

flange longitudinal stiffener. 

 

7.12 Internal Pier Diaphragm Design  

 

Article 6.11.1 directs the designer to the provision of Article 6.7.4 for general design 

considerations for internal and external cross-frames and diaphragms.  The internal diaphragms 

are subject to major-axis bending over the bearing sole plates in addition to shear.  Article 

C6.11.8.1.1 requires that the principal stresses in the internal support diaphragm at the strength 

limit state not exceed the compressive resistance given by Eq. C6.11.8.1.1-1, which is a yield 

criterion for combined stress.  In this example, each tub girder is supported by two bearings, 

therefore, as specified in Article C6.11.8.1.1, the major-axis bending stress in the internal 

diaphragms, fby, is typically small and can be neglected. 

 

Example calculations are demonstrated for the Girder G2 internal diaphragms at the Pier 1 

supports (Girder Section G2-2).  A 1.0 inch thick Grade 50 steel plate is assumed for the internal 

diaphragm web at this location.  Figure 17 shows a sketch of the internal diaphragm.  For 

simplicity, the access hole in the web for inspection purposes is not considered in this example. 

 

 
Figure 17  Sketch of the Internal Diaphragm and Bearing Locations 

 

First, summarize the maximum vertical shears and torsional moments acting on the internal 

diaphragm.  The unfactored shears are taken from Table 2, and most of the unfactored torques 

are taken from Table 6.   

 

The maximum unfactored vertical shears acting on the internal diaphragm, using the critical tub 

girder web are shown below.  The unfactored vertical shears are due to the combined effects of 
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bending and St. Venant torsion in the critical tub girder web.  Therefore, it is necessary to 

separate out the shears due to bending and St. Venant torsion in computations that follow later in 

this section.   

 

The maximum unfactored vertical shears in the critical tub girder web, due to tub girder flexure 

and St. Venant torsion, are: 

 

 

 Steel Dead Load:  VDC1-STEEL  = 47 + |-46| = 93 kips 

 Concrete Deck Dead Load:  VDC1-CONC  = 185 + |-185| = 370 kips 

 Composite Dead Load:  VDC2  = 44 + |-41| = 85 kips 

 Future Wearing Surface Dead Load: VDW = 58 + |-55| = 113 kips 

 Live Load (incl. IM and CF): VLL+IM = 160 + |-155| = 315 kips 

 

The maximum unfactored torques acting on the internal diaphragm, are: 

 

 Steel Dead Load:  TDC1-STEEL  = |-22| + 36 = 58 kip-ft 

 Concrete Dead Load:  TDC1-CONC  = 48 + |-33| = 81 kip-ft 

 Composite Dead Load:  TDC2  = |-149| + 192 = 341 kip-ft 

 Future Wearing Surface Dead Load: TDW = |-197| + 255 = 452 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 980 + |-425| = 1405 kip-ft 

 

For computing the Live Load torque above, assumed concurrent torques are used that produce 

the largest torsional reaction at the support, thus the largest torque acting on the internal 

diaphragm. 

 

Compute the maximum factored shear stress in the diaphragm web.  The vertical shear acting on 

the critical tub girder web is equal to the maximum shear in the internal diaphragm.  First, it is 

necessary to separate out the shears due to tub girder flexure (bending), Vb, and the shears due to 

St. Venant torsion, VT, as the maximum unfactored vertical shears above include the web shear 

due to torsion.   

 

7.12.1 Web Shear Check 

 

The calculations in this section check the combined principal stresses in the internal diaphragm 

web and the shear in the internal diaphragm web.  To perform these checks it is necessary to 

separately consider the shear in the internal diaphragm for tub girder flexure (bending) and the 

shear due to torsion. 

 

7.12.1.1 Noncomposite Shear Force 

 

The sum of the total noncomposite Strength I factored shears is: 

 

 VDC1 = 1.25 (93 +370) = 579 kips 
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To compute the shear due to torsion, it is necessary to compute the shear flow in the 

noncomposite tub girder section. The enclosed area of the noncomposite tub section, Ao_NC, was 

computed previously as 8,065 in
2
.  The factored shear flow in the noncomposite section is 

computed as: 

 

 
o

v
A 2

T
f          Eq. (C6.11.1.1-1) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.
3
) 

 

 kip/in 0.129
2(8,065)

81)(12)851.25(

A 2

T
f

o

v 


        

 

Note that the internal factored noncomposite dead load torque is equal to 173.8 kip-ft.  

 

To obtain the factored noncomposite dead load St. Venant torsional shear, VT, multiply the 

factored shear flow by the depth of the tub girder web along the incline: 

 

 VT = 0.129 (80.40) = 10.37 kips 

 

The vertical component of VT is computed as: 

 

 kips 10.06
80.40

78.0
37.01)(V VertT 








         

 

The factored vertical shear in the diaphragm web due to tub girder flexure alone and 

noncomposite dead loads is then computed by subtracting the vertical component of the factored 

noncomposite dead load St. Venant torsional shear from the total noncomposite dead load shear: 

 

 Vb = 579 – 10.06 = 569 kips 

 

Figure 18 provides an illustration of the above calculation. 
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Figure 18  Illustration for the computation of the shear in the internal diaphragms due to 

St. Venant torsion and tub girder flexure 

 

7.12.1.2 Composite Shear Force 

 

The sum of the total composite Strength I factored shear is: 

 

 VDC2+DW+(LL+I) = 1.25 (85) + 1.5 (113) +1.75 (315) = 827 kips 

 

The enclosed area of the composite tub section, Ao_C, was computed previously as 8,794 in
2
.  

The factored shear flow in the composite section is computed as: 

 

 kip/in 43.2
2(8,794)

)](12)1.75(1,405  1.5(452)  [1.25(341)

A 2

T
f

o

v 


   

 

To obtain the factored composite St. Venant torsional shear, VT, multiply the factored shear flow 

by the depth of the web along the incline: 

 

 VT = 2.43 (80.40) = 195.4 kips 

 

The vertical component of VT is computed as: 

 

 kips 901
80.40

78.0
4.195)(V VertT 








         

 

The factored vertical shear in the diaphragm web due to tub girder flexure alone and composite 

loads is then computed by subtracting the vertical component of the factored composite St. 

Venant torsional shear from the total factored composite shear: 

 

 Vb = 827 – 190 = 637 kips 

 

7.12.1.3 Total Factored Shear Force 

 

The total factored shear stress in the diaphragm web due to torsion is calculated by dividing the 

shear flows by the thickness of the web: 

 



 

114 

 

 ksi 2.56
in. 1.0

2.43

in. 1.0

0.129
)(f Tv    

 

The average Strength I factored shear stress in the diaphragm web due to tub girder flexure 

(bending) is calculated by dividing the total factored shear by the area of the web: 

 

 ksi 15.46
78(1.0)

376569
)(f bv 


   

 

7.12.1.4 Check of Internal Diaphragm Web 

 

As discussed previously, for a tub girder supported on two bearings, the bending stresses in the 

plane of the internal diaphragm due to vertical bending of the diaphragm over the bearing sole 

plates are relatively small and will be neglected in this example for simplicity.  For a tub girder 

supported on a single bearing, the effects of the bending stresses in the plane of the diaphragm 

are likely to be more significant and should be considered.  As specified in Article C6.11.8.1.1, a 

width of the bottom (box) flange equal to 6 times the thickness may be considered effective with 

the diaphragm in resisting in-plane bending. 

 

Therefore, for this example, since bending in the plane of the diaphragm is ignored, the 

maximum principal stress is simply equal to the total factored shear stress: 

 

 fv = (fv)T + (fv)b = 2.56 +15.46 = 18.02 ksi 

 

The combined principal stresses in the diaphragm due to factored loads are checked using the 

general form of the Huber-von Mises-Hencky yield criterion, which is similar to Eq. 

C6.11.8.1.1-1.  The general form of the Huber-von Mises-Hencky yield criterion is: 

 

 y

2

221

2

1 F         

 

where 1 and 2 are the maximum and minimum principal stresses in the diaphragm web, and: 

 

 
2

v

2

zyzy

21 f
22

, 











 













 
   

 

There is a major-axis bending moment that must be carried by the internal diaphragm, resulting 

from the fact that the web is cantilevered out from the bearing (see Figure 17).  Assuming that 

the vertical shear force acts at the mid-depth of the web, the internal diaphragm moment at the 

centerline of the bearing is computed as: 

 

 MID = (569 kips + 637 kips) (12.0 in. + 9.75 in.) = 26,231 kip-in. 

 

It was stated earlier in these calculations that the moment of inertia of the effective internal 

diaphragm is 79,565 in.
4
, and the neutral axis is located 39.89 in. above the bottom of the bottom 
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flange.  The bottom flange thickness is equal to the bottom flange thickness of the tub girder, 

which is 1.50 inches.  Therefore, the major-axis bending stress, y in the internal diaphragm web 

is computed as: 

 

 
  

ksi 66.12
79,565

1.5039.8926,231

I

cM
σ ID

y 


   

 

z is equal to zero because there are no loads applied that cause stress in vertical direction in the 

internal diaphragm web. 

 

Therefore, the principal stresses are computed as: 

 

 ksi 43.2518.02
2

066.21

2

066.12
σ 2

2

1,2 






 








 
   

 

Check the combined principal stress using the Huber-von Mises-Hencky yield criterion: 

 

 ksi .005Fksi .0544)43.25()43.25(25.43)(43.25 y
22    OK (Ratio= 0.881)  

 

Next, check the shear resistance of the internal diaphragm and compare the computed resistance 

to the factored diaphragm shear force.  Compute the shear resistance according to Article 6.11.9 

which specifies the use of the provision of Article 6.10.9 for I-girders.  Calculations not shown 

here indicate that C = 1.0. 

 

 nvu VV          Eq. (6.10.9.1-1) 

 

 pcrn CVVV         Eq. (6.10.9.2-1) 

 

 kips 262,2(78)(1.0)0.58(50.0)Dt0.58FV wp yw
   Eq. (6.10.9.2-2) 

 

 kips 226,22)(1.0)(2,26Vn    

 

Check Eq. 6.10.9.1-1: 

  

 kips 262,22)(1.0)(2,26Vkips 1,208396569V nvu   OK (Ratio 0.534) 

 

7.12.2 Bearing Stiffeners 

 

Bearing stiffeners are placed on each side of the web of the internal diaphragm at each bearing 

location.  The design of the Girder G2 bearing stiffeners at Pier 1 (Section G2-2) is illustrated in 

this section.  It is assumed that the bearings at Pier 1 are fixed, thus there is no expansion causing 

eccentric loading on the bearing stiffeners that are attached to the internal diaphragm.  According 
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to Article 6.11.11.1, bearing stiffeners attached to the internal diaphragms are to be designed 

using the provisions of Article 6.10.11.2.4b applied to the diaphragm rather than the girder web. 

 

Bearing stiffeners must extend the full depth of the web and as closely as practical to the outer 

edges of the flanges.  Each stiffener must be either milled to bear against the flange through 

which it receives its load or attached to that flange by a full penetration groove weld.  Typical 

practice is for the bearing stiffeners to be milled to bear plus fillet welded to the appropriate 

flange.  Full penetration groove welds are costly and often result in welding deformation of the 

flange. 

 

The unfactored reactions are as shown below for the left and right bearings at Pier 1, Girder G2.  

These results are taken directly from the three-dimensional analysis. 

 

Left Bearing: 

 Steel Dead Load:  RDC1-STEEL  = 79 kips 

 Concrete Deck Dead Load:  RDC1-CONC  = 238 kips 

 Composite Dead Load:  RDC2  = 85 kips 

 Future Wearing Surface Dead Load: RDW = 113 kips 

 Live Load (incl. IM and CF): RLL+IM = 294 kips 

 

Right Bearing: 

 Steel Dead Load:  RDC1-STEEL  = 93 kips 

 Concrete Deck Dead Load:  RDC1-CONC  = 370 kips 

 Composite Dead Load:  RDC2  = 11 kips 

 Future Wearing Surface Dead Load: RDW = 15 kips 

 Live Load (incl. IM and CF): RLL+IM = 287 kips 

 

The maximum Strength I factored reactions for each bearing are computed as: 

 

 RLEFT = 1.25 (79 + 238 + 85) + 1.5 (113) + 1.75 (294) = 1,187 kips 

 

 RRIGHT = 1.25 (93 + 370 + 11) + 1.5 (15) + 1.75 (287) = 1,117 kips 

 

The factored reaction at the left bearing is larger, and therefore controls.  The bearing stiffeners 

are assumed to have a yield stress of 50 ksi, and are 1 in. by 11 in. plates.  As shown in Figure 

17, there is one bearing stiffener on each side of the internal diaphragm web, and therefore two at 

each bearing location.  

 

The width, bt, of the projecting stiffener element must satisfy: 

 

 
ys

pt
F

E
 t0.48b         Eq. (6.10.11.2.2-1) 

 

 in. 11.6
50

29,000
(1.0) 0.48

F

E
 t0.48in. 11.0b

ys
pt    OK   
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7.12.2.1 Bearing Resistance 

 

According to Article 6.10.11.2.3, the factored bearing resistance for the fitted ends of bearing 

stiffeners is taken as: 

 

    
nsbbrsb RR         Eq. (6.10.11.2.3-1) 

 

where: 

 

 b = resistance factor for bearing specified in Article 6.5.4.2 (b = 1.0) 

 (Rsb)n =  nominal bearing resistance for fitted ends of bearing stiffeners (kip) 

 

and: 

   yspnnsb FA4.1R         Eq. (6.10.11.2.3-2) 

 

where: 

 

 Apn  = area of the projecting elements of the stiffener outside of the web-to-flange fillet 

welds but not beyond the edge of the flange (in.
2
) 

 Fys  = specified minimum yield strength of the stiffener (ksi) 

 

Assuming a 1 inch stiffener clip, compute Apn as follows: 

 

    2

pn in .00200.11112A     

 

The nominal bearing resistance of the stiffeners at a single bearing is computed as: 

 

      kips 400,1500.204.1R nsb   

 

The factored bearing resistance of the stiffeners at a single bearing is computed as: 

 

     kips 187,1Rkips 400,1400,10.1R ursb     OK 

 

7.12.2.2 Axial Resistance 

 

Determine the axial resistance of the bearing stiffener according to Article 6.10.11.2.4.  This 

article directs the Engineer to Article 6.9.2.1 for calculation of the factored axial resistance, Pr.  

The yield strength is Fys, the radius of gyration is computed about the midthickness of the web, 

and the effective length is 0.75 times the web depth (Kl = 0.75D). 

 

 
ncr PP           Eq. (6.9.2.1-1) 
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where: Pn = nominal compressive resistance determined using the provisions of Article 6.9.4 

(kip) 

 c = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.95) 

 

As indicated in Article 6.9.4.1.1, Pn is the smallest value of the applicable modes of buckling, 

and in the case of bearing stiffeners, torsional buckling and flexural-torsional buckling are not 

applicable.  Therefore, Pn is computed for flexural buckling only.  

 

To compute Pn, first compute Pe and Po.  Pe is the elastic critical buckling resistance determined 

as specified in Article 6.9.4.1.2 for flexural buckling.  Po is the equivalent nominal yield 

resistance equal to QFyAg, where Q is the slender element reduction factor taken equal to 1.0 for 

bearing stiffeners in accordance with Article 6.9.4.1.1: 
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E
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           Eq. (6.9.4.1.2-1) 

 

In accordance with Article 6.10.11.2.4, the effective length, Kℓ, is to be taken as 0.75D: 

 

 Kℓ = 0.75D = 0.75(80.40) = 60.3 in. 

 

Compute the radius of gyration about the midthickness of the web. 
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According to the provisions of Article 6.10.11.2.4b, for stiffeners welded to the web, a portion of 

the web is to be included as part of the effective column section.  For stiffeners consisting of two 

plates welded to the web, the effective column section is to consist of the two stiffener elements, 

plus a centrally located strip of web extending 9tw on each side of the outer projecting elements 

of the group.  The area of the web that is part of the effective section is computed as follows: 

 

     2

w in. 0.180.10.192A   

 

The total area of the effective section is therefore: 

 

 2

s in. 0.40)00.11)(00.1(20.18A   

 

Next, compute the moment of inertia of the effective section about the centerline of the 

diaphragm of the web, conservatively using the stiffeners only: 
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Compute the radius of gyration: 

 

 in. 03.5
0.40

014,1
rs   

 

The elastic critical buckling resistance is computed as follows: 

 

 
 

  kips 663,970.40
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The equivalent nominal yield resistance is computed as follows, with As used for Ag: 

 

     kips 000,20.40500.1AQFP gyo   

 

Since  
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the nominal compressive resistance is computed as: 
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          Eq. (6.9.4.1.1-1) 

 

   kips  979,1000,2658.0P 8.39
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The factored compressive resistance of the bearing stiffeners is computed as follows: 

 

   kips 880,1979,195.0PP ncr   

 

 kips 1,880Pkips 1,187P ru     OK (Ratio = 0.631) 

 

The 1.0 in. by 11.0 in. bearing stiffeners selected satisfy the requirements for design. 

 

7.13 Top Flange Lateral Bracing Design  
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Top flanges of tub girders should be braced so that the section acts as a pseudo-box for 

noncomposite loads applied before the concrete deck hardens or is made composite.  Herein, 

calculations demonstrate the design of the top flange single diagonal bracing member in Span 1 

of Girder G2 in the first bay adjacent to the abutment for constructibility.  However, top flange 

bracing must also be designed to satisfy the strength limit state for the final condition as well as 

for constructibility.  In many cases, the factored forces during construction will govern over the 

factored forces in the final condition. 

 

Article 6.11.1 specifies that the top lateral bracing for tub girders must satisfy the provisions of 

Article 6.7.5.  The bracing is designed according to the provision of Articles 6.8 and 6.9 for 

tension and compression, respectively.  Wind lateral loading and the lateral force caused by deck 

overhang brackets are neglected in this design example. 

 

The unfactored axial forces in the diagonal bracing member in the first bay of Span 1 of Girder 

G2 are obtained from the three-dimensional analysis and are as follows:  

 

 Steel Dead Load:  PSTEEL  = -13 kip 

 Deck Cast #1 Dead Load:  PCONC  = -100 kip 

 

In accordance with Article 3.4.2.1, when investigating Strength I, III, and V during construction, 

load factors for the weight of the structure and appurtenances, DC and DW, are not to be taken to 

be less than 1.25.  Therefore, the factored axial load is computed as: 

 

 Pu = Paxial = 1.25 [-13 + (-100)] = -141 kips (C) 

 

Compute the unbraced length of the top flange lateral bracing member, Lb: 

  

 Tub width at the top flanges = 120 in. 

 Top flange width = 16 in. 

 Clear distance between top flanges = 120 – 16 = 104 in. 

 Spacing of top flange lateral bracing = 16.3 ft = 196 in. 

 

in. 222196104L 22

b   

  

A structural tee is used for the top flange lateral bracing, with the stem down and its flange 

bolted to the bottom of the top flanges, which is the preferable method of connection. A WT 

9x48.5 is selected for the top flange lateral bracing.  From the AISC Steel Construction Manual, 

the section properties for a WT 9x48.5 are:  

 

 Area = 14.2 in.
2
; y = 1.91 in.; Sx = 12.7 in.

3
; rx = 2.56 in.; ry = 2.65 in.; J = 2.92 in.

4
 

 

Check buckling about the x-axis as this is the governing condition.  The eccentricity of the 

connection to the center of gravity of the structural tee causes a moment on the member.  The 

moment due to eccentricity is computed as: 

 

 Mux = Paxial y = (141) (1.91) = 269 kip-in. 
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Since the structural tee is subjected to axial compression and flexure, it is necessary to check the 

combined effects of axial compression and flexure, in accordance with Article 6.9.2.2. 

 

First, check the limiting slenderness ratio for secondary members in compression, as specified in 

Article 6.9.3.  The effective length factor, K, as specified in Article 4.6.2.5, for bolted 

connections at both ends is 0.75. 

 

 
  

1400.65
56.2

22275.0

r

K 

x




 OK 

 

Determine if the stem of the WT 9x48.5 is a nonslender member element in accordance with 

Article 6.9.4.2.1: 

 

 
yF

E
k

t

b
         Eq. (6.9.4.2-1) 

 

where: 

 

 k  = plate buckling coefficient as specified in Table 6.9.4.2.1-1 

 b  =  width of plate as specified in Table 6.9.4.2.1-1 (in.) 

 t = plate thickness (in.) 

 

The plate buckling coefficient is taken as 0.75 from Table 6.9.4.2-1 for stems of rolled tees.  The 

width, b, is taken as the full depth of the tee section and thickness, t, is for that of the stem.  

Check Eq. 6.9.4.2-1: 
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Since Eq. 6.9.4.2-1 is satisfied, the slender element reduction factor, Q, specified in Article 

6.9.4.1.1 is taken as 1.0.  (Note: similar calculations, not shown, indicate that the flange of the 

tee section is also a nonslender element.) 

 

Compute the compressive resistance in accordance with Article 6.9.2.1, where the factored 

compressive resistance, Pr, is taken as: 

 

 
ncr PP          Eq. (6.9.2.1-1) 

 

where: 

 

 c  = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.95) 

 Pn  =  nominal compressive resistance as specified in Article 6.9.4 or 6.9.5, as applicable 

(kip) 
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Compute the nominal compressive resistance, Pn, in accordance with Article 6.9.4.1.1.  In order 

to determine which equation to use to compute the nominal compressive resistance, it is 

necessary to compute the elastic critical buckling resistance, Pe, and the equivalent nominal yield 

resistance, Po. 

 

The elastic critical buckling resistance, Pe, is specified in Article 6.9.4.1.2 for flexural buckling, 

and specified in Article 6.9.4.1.3 for flexural-torsional buckling.  In accordance with Table 

6.9.4.1.1-1, flexural buckling and flexural-torsional buckling must be considered to determine 

the compressive resistance of structural tees.  Separate calculations, not provided here, show that 

flexural buckling governs in this particular case..  The computation of Pe for the flexural 

buckling resistance is illustrated herein. 

 

Compute the elastic critical buckling resistance, Pe, based on flexural buckling in accordance 

with Article 6.9.4.1.2: 
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       Eq. (6.9.4.1.2-1) 

 

where: 

 

 Ag  = gross cross-sectional area of the member (in.
2
) 

 K  =  effective length factor in the plane of buckling determined as specified in Article 

4.6.2.5 

 ℓ = unbraced length in the plane of buckling (in.) 

 rs = radius of gyration about the axis normal to the plane of buckling (in.) 

 

The elastic critical buckling resistance is then computed as: 

 

 
 

 
  kips 96214.2

65.0

29,000π
P

2

2

e     

 

The equivalent nominal yield resistance, Po, is computed in accordance with Article 6.9.4.1.1 as 

follows: 

 

 gyo A F QP      

 

where: 

 

 Q  = slender element reduction factor determined as specified in Article 6.9.4.2.   

 

As stated previously, since Eq. 6.9.4.2-1 is satisfied for both the stem and flange of the tee 

section, Q can be taken as 1.0.  Therefore, the nominal yield resistance, Po, is computed as: 
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     kips 71014.2501.0Po      

 

As specified in Article 6.9.4.1.1, check the result of Pe / Po: 
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Since Pe / Po is greater than 0.44, the nominal compressive resistance, Pn, is computed in 

accordance with Eq. 6.9.4.1.1-1. 
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       Eq. (6.9.4.1.1-1) 

 

   kips 5217100.658P 962
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Compute the factored compressive resistance, Pr, in accordance with Article 6.9.2.1: 

 

    kips 4955210.95PP ncr       Eq. (6.9.2.1-1) 

 

Determine the factored flexural resistance about the x-axis using the provisions of Article 

6.12.1.2 for miscellaneous flexural members, and specifically Article 6.12.2.2.4 for structural 

tees. 

 

The factored flexural resistance, Mr, is to be taken as: 

 

 
nfr MM          Eq. (6.12.1.2.1-1) 

 

where: 

 

 f  = resistance factor for flexure as specified in Article 6.5.4.2 (f = 1.0) 

 Mn  =  nominal flexural resistance specified in Articles 6.12.2.2 or 6.12.2.3, as applicable 

(kip-in.) 

 

In accordance with Article 6.12.2.2.4, the nominal flexural resistance is to be taken as the 

smallest value based on yielding, lateral torsional buckling, or local buckling of the elements, as 

applicable.   

 

For yielding, the nominal flexural resistance is given as: 

 

 xypn ZFMM         Eq. (6.12.2.2.4-1) 
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where: 

 

 Mp  =  plastic moment (kip-in.) 

 Fy = specified minimum yield strength (ksi) 

 Zx = plastic section modulus about the x-axis (in.
3
) 

 

Also as specified in Article 6.12.2.2.4, Mn in Eq. 6.12.2.2.4-1 is limited to 1.6My for stems in 

tension, and My for stems in compression, where My is the yield moment based on the distance to 

the tip of the stem.  Determine if the tip of the stem is in compression or tension: 

 

 ksi 11.3
12.7

269

14.2

141

S

M
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P
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x

ux
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axial

stem tip, 


  (tension) 

 

Therefore, the nominal flexural resistance for yielding is limited to 1.6My.  The nominal flexural 

resistance for yielding is computed as: 

 

    inkip 1,13022.650ZFMM xypn     

 

    inkip 1,01612.7506.1SF6.1M6.1 xyy   (governs)  

 

 inkip 1,016Mn   (for yielding) 

 

For lateral torsional buckling, the nominal flexural resistance is to be taken as: 
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GJEIπ
M      Eq. (6.12.2.2.4-2) 

 

in which: 
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d
3.2B
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b

        Eq. (6.12.2.2.4-3) 

 

where: 

 

 d  =  total depth of the section (in.) 

 G = shear modulus of elasticity for steel = 0.385E (ksi) 

 Iy = moment of inertia about the y-axis (in.
4
) 

 J = St. Venant torsional shear constant (in.
4
) 

 Lb = unbraced length (in.) 
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The plus sign for B in Eq. 6.12.2.2.4-3 applies when the stem is in tension, and the minus sign 

applies when the stem is in compression anywhere along the length of the unbraced length.  

Therefore, the term B is computed as: 

 

 567.0
92.2

100

222

30.9
3.2B 








     

 

The lateral torsional buckling resistance is then computed as: 

 

 
    

inkip 7,4810.56710.567
222

2.9211,20010029,000π
M 2
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Since the flange is in compression, flange local buckling must also be considered in accordance 

with Article 6.12.2.2.4.  First check if the flange slenderness, f, exceeds the limiting slenderness 

for a compact flange, pf.  If pf is not exceeded, flange local buckling does not need to be 

checked. 
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pf      Eq. (6.12.2.2.4-7) 

 

 15.96.38λ pff      

 

Given that f  <  pf, local flange buckling does not need to be checked.  Also, because the stem 

is in tension, local buckling of the stem does not need to be investigated, and is not a concern 

even if the stem was in compression as long as Eq. 6.12.2.2.4-2 is satisfied. 

 

Thus, the nominal flexural resistance, Mn, of the tee section is governed by yielding, and is equal 

to 1,016 kip-in.  Compute the factored flexural resistance, Mr, as follows: 

 

    in.kip 1,0161,0161.0MM nfr      Eq. (6.12.1.2.1-1) 

 

Check the combined axial compression and flexure as specified in Article 6.9.2.2.  First, it is 

necessary to determine the value of the factored axial compressive load, Pu, divided by the 

factored compressive resistance, Pr. 
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Since the above ratio is greater than 0.2, Eq. 6.9.2.2-2 is to be used to check the combined axial 

compression and flexure, noting that there is no bending about the y-axis. 
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        Eq. (6.9.2.2-2) 

 

where: 

 

 Mux  =  factored flexural moment about the x-axis (kip-in.) 

 Mrx = factored flexural resistance (kip-in.) 

 

Check Eq. 6.9.2.2-2 as follows: 

 

 0.152.0
016,1

269

0.9

0.8

495

141

M

M

0.9

0.8

P

P

rx

ux

r

u 





















   OK  

 

The WT 9x48.5 serving as the top flange diagonal bracing member in Span 1 of Girder G2 in the 

first bay adjacent to the abutment satisfies the interaction ratio for combined axial compression 

and flexure for constructibility loading.  Design checks would be performed for all top flange 

lateral bracing members, investigating both tension and compression constructibility forces. 

 

7.14 Bolted Field Splice Design  

 

This section will show the design of a bolted field splice, in accordance with the provisions of 

Article 6.13.6.  The design computations will be illustrated for the Field Splice #1 on Girder G2 

(see Figure 9).  First, single bolt capacities are computed for slip resistance (Article 6.13.2.8) and 

shear resistance (Article 6.13.2.7), and the bearing resistance on the connected material (Article 

6.13.2.9).  The field splice is then checked for constructibility, the service limit state, and the 

strength limit state. 

 

All bolts used in the field splice are 0.875 inch diameter ASTM A325 bolts.  Table 6.13.2.4.2-1 

shows that a standard hole diameter size for a 0.875 inch diameter bolt is 0.9375 inch.  The 

connection is designed assuming a Class B surface condition is provided, which corresponds to 

unpainted and blast-cleaned surfaces and blast-cleaned surfaces with Class B coatings.  Also, it is 

assumed that the bolt threads will not be permitted in the shear planes. 

 

Article 6.13.6.1.4a requires at least two rows of bolts on each side of the connection.  Oversize or 

slotted holes in either the member or the splice plates are not permitted.  The bolt pattern for the 

top flange splice is shown in Figure 19, the bolt pattern for the bottom flange splice is shown in 

Figure 20, and the bolt pattern for the web splice is shown in Figure 21.  It should be noted that a 

0.5 inch gap is assumed between the edges of the field pieces at this splice location. 
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Figure 19  Bolt Pattern for the Top Flange Field Splice 

 

 

 
Figure 20  Bolt Pattern for the Bottom Flange Field Splice, shown inside the tub girder 

looking down at the bottom flange 
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Figure 21  Bolt Pattern for the Web Field Splice, shown along the web slope 

 

Unfactored analysis results for the girder major-axis bending moments, torques, shears, and top 

flange lateral bending moments at Field Splice #1 on Girder G2 are summarized in Table 16. 

 

Table 16  Unfactored Analysis Results for the Design of Field Splice #1 on Girder G2 

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg.

Moment (kip-ft) 462 1941 2749 326 428 5221 -3080

Torque (kip-ft) -36 -125 -188 -58 -76 346 -517

Top Flange Lateral 

Moment (kip-ft)
-1 -7 -15 n/a n/a n/a n/a

Shear (kips) -17 -69 -61 -12 -16 36 -85

Unfactored Demands at G2 Field Splice 1

Demand
Dead Load LL+I

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
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As specified in Article C6.13.6.1.4a, for a flexural member, it is recommended that the smaller 

section at the point of the splice be taken as the side of the splice that has the smaller product of 

the calculated moment of inertia for the noncomposite steel section and the smallest specified 

minimum flange yield strength on the side of the splice under consideration..  Therefore, girder 

section properties at Field Splice #1 on Girder G2 should be taken as those computed previously 

for the design Section G2-1 illustrated in this design example, as it is the smaller section at this 

splice location.  Reference the tables and computations provided in Section 7.2 of this design 

example. 

 

Furthermore, in accordance with Article 6.13.6.1.4a, the flexural stresses due to the factored 

loads at the strength limit state and for checking slip of bolted connections at the point of the 

splice are to be determined using gross section properties. 

 

In accordance with Article C6.13.6.1.4c, for horizontally curved tub girders, the St. Venant 

torsional shear must be considered in the design of bottom flange splices at all limit states.  The 

St. Venant torsional shears are typically neglected in the top flanges of tub sections once the 

flanges are continuously braced.  St. Venant torsional shears in the top flange are not considered 

in the design of the top flange splice in this design example, as these shears are negligible. 

 

7.14.1 Bolt Resistance for the Service Limit State and Constructibility 

 

For slip-critical connections, the factored resistance, Rr, of a bolt at the Service II load 

combination is taken as: 

 

Rr = Rn                  Eq. (6.13.2.2-1) 

 

where: 

 

 Rn  =  the nominal slip resistance as specified in Article 6.13.2.8 (kip) 

 

The nominal slip resistance of a bolt in a slip-critical connection is to be taken as: 

 

 tsshn PNKKR 
                Eq. (6.13.2.8-1)  

 

where: 

 

 Ns  =  number of slip planes per bolt 

 Pt  = minimum required bolt tension specified in Table 6.13.2.8-1(kip) 

 Kh  = hole size factor specified in Table 6.13.2.8-2 

 Ks = surface condition factor specified in Table 6.13.2.8-3 

 

For this design example: 

  

 2 slip planes are provided as there are two splice plates on each side of the girder 

element, thus Ns equals 2; 



 

130 

 

 As specified in Table 6.13.2.8-1, for 0.875 inch diameter A325 bolt, Pt is equal to 39 

kips; 

 As specified in Table 6.13.2.8-2, for a standard size hole, Kh is equal to 1.00; and 

 As specified in Table 6.13.2.8-3, for Class B surface conditions, Ks is equal to 0.50. 

 

Therefore, the factored slip resistance for service and constructibility checks is: 

 

 kips/bolt 39)39)(2)(50.0)(0.1(RR nr   
 

7.14.2 Bolt Resistance for the Strength Limit State  

 

The factored resistance, Rr, of a bolted connection at the strength limit state is to be taken as: 

 

Rr = Rn                 Eq. (6.13.2.2-2) 

 

where: 

 

   =  resistance factor for bolts specified in Article 6.5.4.2 

 

Article 6.13.6.1.4a states that the factored flexural resistance of the flanges at the point of the 

splice at the strength limit state must satisfy the applicable provisions of Article 6.10.6.2, which 

relates to flexure.  The girder satisfies the applicable provisions of Article 6.10.6.2 at the splice 

location; however, the checks at this particular location are not included in this example.   

 

7.14.2.1 Bolt Shear Resistance 

 

The nominal shear resistance, Rn, of a high-strength bolt at the strength limit state where threads 

are excluded from the shear plane is computed as follows: 

 

 
subbn NFA48.0R                  Eq. (6.13.2.7-1)  

 

where: 

 

 Ab  =  area of bolt corresponding to the nominal diameter (in.
2
) 

 Fub  = specified minimum tensile strength of the bolt in accordance with Article 

6.4.3(ksi) 

 Ns  = number of shear planes 

 

In accordance with Article 6.4.3, the minimum tensile strength of a 0.875 inch diameter A325 

bolt is 120 ksi.  Two shear planes exist for all field splice connections.  Therefore, the nominal 

shear resistance is computed as: 

 

Rn = 0.48(0.601)(120)(2) = 69.2 kips/bolt 
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The factored shear resistance, Rr, of a high-strength bolt at the strength limit state is computed as 

follows: 

 

Rr = sRn                Eq. (6.13.2.2-2) 

 

where:  

 s  =  shear resistance factor for bolts in shear from Article 6.5.4.2 (s = 0.80) 

 

Therefore, the factored shear resistance is: 

 

 Rr = (0.80)(69.2) = 55.4 kips/bolt 

 

7.14.2.2 Bearing Resistance on Connected Material 

 

The nominal bearing resistance of interior and end bolt holes at the strength limit, Rn, is taken as 

one of the following two terms, depending on the bolt clear distance and the clear end distance. 

 

(1) With bolts spaced at a clear distance between holes not less than 2.0d and with a clear 

end distance not less than 2.0d: 

 

un dtF4.2R                  Eq. (6.13.2.9-1)  

 

(2) If either the clear distance between holes is less than 2.0d or the clear end distance is less 

than 2.0d: 

 

ucn tFL2.1R                  Eq. (6.13.2.9-2)  

 

where:  

 

 d  =  nominal diameter of the bolt (in.) 

 t = thickness of the connected material (in.) 

 Fu  = tensile strength of the connected material specified in Table 6.4.1-1 (ksi) 

 Lc = clear distance between holes or between the holed and the end of the member in 

the direction of the applied force 

 

In the case of the web, the end distance is 2.0 inches.  For simplicity, although the bolt hole 

diameter is actually 0.9375 in., assume for this calculation that the bolt hole diameter is 1 inch, 

creating a clear end distance of 1.5 inches, which is less than 2.0d.  Therefore, Eq. 6.13.2.9-2 

applies.  The tensile strength of the girder and splice plates in this design example is 

conservatively taken as 65 ksi.  The nominal bearing resistance for the end row of bolts in the 

web is: 

 

 Rn = 1.2(1.5)(0.5625)(65) = 65.81 kips/bolt 

 

The factored bearing resistance, Rr, is computed as: 
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Rr = bbRn         Eq. (6.13.2.2-2) 

 

where:  

 

 bb  =  shear resistance factor for bolts bearing on material from Article 6.5.4.2  

 (bb = 0.80) 

 

Therefore, the factored bearing resistance is: 

 

 Rr = bbRn = (0.80)(65.81) = 52.65 kips/bolt 

 

The bearing resistance above is computed for the thinnest element, the web, but it can 

conservatively be used for the flanges as well, as the web thickness is less than the flange 

thickness.  Alternatively, the bearing resistance for the flange elements can be computed as well. 

 

For interior rows of bolts, Eq. 6.13.2.9-1 applies, and the nominal bolt resistance is computed as: 

 

Rn = 2.4dtFu               Eq. (6.13.2.9-1) 

 

Rn = 2.4(0.875)(0.5625)(65) = 76.78 kips/bolt 

 

Therefore, the factored bearing resistance is: 

 

Rr = bbRn = (0.80)(76.78) = 61.42 kips/bolt 

 

Again, the bearing resistance above is computed for the thinnest element, the web, but it can 

conservatively be used for the flanges as well. 

 

7.14.3 Constructibility Checks 

 

According to Article 6.13.6.1.4a, connections must be proportioned to prevent slip during the 

erection of the steel and during the casting of the concrete deck.  Article 6.13.6.1.4c requires that 

lateral bending effects be considered in the design of curved girder splices.  Therefore, flange 

lateral bending must be considered for the top flanges of tub girders prior to hardening of the 

concrete deck, as the top flanges are discretely braced in this situation. To account for the effects 

of flange lateral bending, the flange splice bolts will be designed for the combined effects of 

shear and moment using the traditional elastic vector method.  The shear on the bolts is caused 

by the flange force calculated from the average major-axis bending stress in the flange, and the 

moment on the bolts is caused by the flange lateral bending. 

 

Concrete deck Cast #1 causes a larger positive major-axis moment at the splice location than the 

moment caused by assuming the entire concrete deck is placed at one time.  Therefore, for this 

field splice, perform the constructibility checks for the loading case of steel self-weight plus 

concrete deck Cast #1.  For Strength I for constructibility, the dead load factor is 1.25 according 

to the provisions of Article 3.4.2.1 (Note: as mentioned previously, the special load combination 
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for primary steel superstructure components during construction specified in Article 3.4.2.1 is 

not considered in this example). 

 

In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section 

distortion are to be considered when checking the slip resistance of the bolts for constructibility 

and at the service limit state for flange splices in horizontally curved tub-girder bridges.  The 

internal cross frame spacing in the region of the splice is approximately 16.0 feet.  An 

examination of the longitudinal warping stresses at the top and bottom of the tub girder for 

constructibility and at the bottom of the girder for the service limit state for this internal cross 

frame spacing (according to calculations similar to those illustrated for design Section G2-1) 

indicates that these longitudinal stresses are negligible in this case and will be ignored in 

calculations provided herein. 

 

7.14.3.1 Constructibility Check of Top Flange Splice Bolts 

 

To check constructibility of the top flange, first compute the polar moment of inertia of the top 

flange bolt pattern, shown in Figure 19.  The bolt pattern consists of the 12 bolts in the flange on 

one side of the connection.  The polar moment of inertia, Ip, is computed as: 

 

       2222

p in 4230.3420.60.332I   

 

Compute the total unfactored major-axis bending moment due to vertical loads and the total 

unfactored flange lateral moment from the analysis results provided in Table 16 for steel plus 

concrete for Cast #1 (DC1STEEL + DC1CAST1): 

 

 Major-axis bending moment = 462 + 2,749 = 3,211 kip-ft 

 

 Top flange lateral bending moment = -1 + (-15) = -16 kip-ft 

 

As discussed previously, the section properties of Field Section 1 of Girder 2 are used to 

compute the bending stresses since Field Section 1 is the smaller of the two girder sections 

connected by the splice.  This splice location has the same section properties as those computed 

for design Section G2-1.  The Construction Strength I factored major-axis bending stress at the 

mid-thickness of the top flange is computed as: 

 

 
  

ksi 10.98
185,384

1.0/2-42.77123,211
1.25f top 








  

 

Compute the factored force in the top flange using the major-axis bending stress at the mid-

thickness the flange.  Multiply the factored flange stress by the gross section of the flange to 

check for slip. 

 

 Ftop = (-10.98)(16.0)(1.0) = -176 kips 
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Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 

dividing the factored flange force by the number of bolts on one side of the splice: 

 

 kips/bolt 14.67
12

176
F   vertLong 


  

 

Compute the factored longitudinal component of force in the critical bolt due to the flange lateral 

moment, noting that the transverse distance from the centroid of the bolt group to the critical bolt 

is 6.0 inches: 

 

  
  

kips/bolt 4.21
342

6.01216
1.25F lat  Long 


  

 

Therefore, the total factored longitudinal force in the critical bolt is computed as: 

 

 kips/bolt 88.1821.467.14F   totLong   

 

Compute the factored transverse component of force in the critical bolt due to the flange lateral 

moment, noting that the longitudinal distance from the centroid of the bolt group to the critical 

bolt is 3.0 inches: 

 

  
  

kips/bolt 2.11
342

3.01216
1.25FTrans 


  

 

Compute the resultant force on the critical bolt: 

 

 kips/bolt 00.1911.288.18FR 22

u   

 

Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 

resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 

 

 Ru = 19.00 kips/bolt < Rr = 39 kips/bolt  OK 

 

7.14.3.2 Constructibility Check of Bottom Flange Splice Bolts 

 

To check constructibility of the bottom flange, first compute the polar moment of inertia of the 

bottom flange bolt pattern, shown in Figure 20.  The bolt pattern consists of the 40 bolts in the 

flange on one side of the connection.  The polar moment of inertia, Ip, is computed as: 

 

Ip = [2(20)(2.25)
2
 + 2(2)(2.5

2
 + 6.25

2
 + 10.0

2
 + 13.75

2
 + 17.5

2
 + 21.25

2
 + 25.0

2
 + 28.75

2
  

+ 32.5
2
 + 36.25

2
)] = 19,859 in.

4
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Compute the total unfactored major-axis bending moment due to vertical loads, and the 

unfactored torque from the analysis results provided in Table 16 for steel plus concrete for Cast 

#1 (DC1STEEL + DC1CAST1): 

 

 Major-axis bending moment = 462 + 2,749 = 3,211 kip-ft 

 

 Torque = -36 + (-188) = -224 kip-ft 

 

As discussed previously, the section properties of Field Section 1 of Girder 2 are used to 

compute the bending stresses since Field Section 1 is the smaller of the two girder sections 

connected by the splice.  This splice location has the same section properties as those computed 

for design Section G2-1.  The Construction Strength I factored major-axis bending stress at the 

mid-thickness of the bottom flange is computed as: 

 

  
  

ksi 50.9
185,384

0.625/2-36.86123,211
1.25f bot 








  

 

Compute the factored force in the bottom flange using the average major-axis bending stress at 

the mid-thickness of the flange.  Multiply the factored flange stress by the gross section of the 

flange to check for slip. 

 

 Fbot = (-9.50)(83.0)(0.625) = 493 kips 

 

The bottom flange splice bolts should be design for the combined effects of St. Venant torsional 

shear and major-axis bending moment.  The enclosed area of the noncomposite tub girder, Ao, 

was previously computed to be 7,921in.
2
 in the constructibility check of the bottom flange of 

section G2-1.  The unfactored St. Venant torsional shear in the bottom flange is computed as: 

 

 
 

 
  kips 13.781

79212

12224
b

2A

T
V f

o

flgbot 


  

 

Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 

produces a lateral moment on the bottom flange bolt group on each side of the splice. The 

factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 

 

  in.-kip 7.61
2

4.5

2

4.5
13.7MLAT 








  

 

Compute the factored longitudinal component of force in the critical bolt due to the lateral 

moment in the bottom flange, noting that the transverse distance from the centroid of the bolt 

group to the critical bolt is 36.25 inches: 

 

  
 

kips/bolt 14.0
19,859

36.257.61
1.25F lat  Long   
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Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 

dividing the factored flange force by the number of bolts on one side of the splice: 

 

 kips/bolt 12.33
40

493
F   vertLong   

 

Therefore, the total factored longitudinal force in the critical bolt is computed as: 

 

 kips/bolt 47.1233.1214.0F   totLong   

 

Compute the factored transverse component of force in the critical bolt due to the lateral moment 

in the bottom flange, noting that the longitudinal distance from the centroid of the bolt group to 

the critical bolt is 2.25 inches: 

 

  
 

kips/bolt 01.0
19,859

2.257.61
1.25F lat  Trans   

 

Compute the factored transverse force in each bolt resulting from the St. Venant torsional shear 

force by dividing the shear force by the number of bolts on one side of the splice, and 

multiplying by the 1.25 load factor: 

 

   kips/bolt 0.43
40

7.13
25.1F Shear  Trans   

 

Therefore, the total factored transverse force in the critical bolt is computed as: 

 

 kips/bolt 44.043.001.0F   totTrans   

 

Compute the resultant force on the critical bolt: 

 

 kips/bolt 48.1244.047.12FR 22

u   

 

Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 

resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 

 

 Ru = 12.48 kips/bolt < Rr = 39 kips/bolt  OK 

 

7.14.3.3 Constructibility Check of Web Splice Bolts 

 

A pattern of two rows of 7/8 inch diameter bolts spaced vertically at 3.75 inches is designed for 

the web splice.  There are 40 bolts on each side of the connection, and the pattern is previously 

shown in Figure 21.  In this example, the web splice is designed conservatively, assuming that 
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the maximum major-axis bending moment and maximum vertical shear at the splice occur under 

the same loading condition. 

 

First, compute the polar moment of inertia of the web bolt group about the centroid of the bolt 

group on one side of the splice using Eq. C6.13.6.1.4b-3: 

 

     1mg1ns
12

mn 
I 2222

p       Eq. (C6.13.6.1.4b-3) 

 

where:  

 

 n  =  number of bolts in one vertical row 

 m = number of vertical rows of bolts 

 s = vertical pitch (in.) 

 g = horizontal pitch (in.) 

 

Therefore the web bolt group polar moment is computed as: 

 

 
        42222

p in. 18,793123.001203.75
12

2 20
I    

 

Compute the total unfactored shear at the splice (flexure plus torsional shear in the critical web) 

from the analysis results provided in Table 16 for steel plus concrete for Cast #1 (DC1STEEL + 

DC1CAST1): 

 

 Shear = -17 + (-61) = -78 kips 

 

Therefore, using the Construction Strength I load factor for dead load of 1.25, the factored shear 

is: 

 

 V = (1.25) (-78) = 97.5 kips 

 

Compute the moment, Mv, due to the eccentricity of the factored shear about the centroid of the 

connection (refer to the web bolt pattern in Figure 21). 

 

ft-kip 5.30
12

1

2

5.4

2

3
5.97eVM v 
















  

 

Determine the portion of the major-axis bending moment resisted by the web, Muw, and the 

horizontal force resultant in the web, Huw, using the equations provided in Article C6.13.6.1.4b.  

Muw and Huw are assumed to be applied at the mid-depth of the web.  The factored bending 

stresses at the mid-thickness of the top and bottom flanges for Steel plus Cast #1 were previously 

computed as follows: 

 

 Top flange: fs = ftop = -10.98 ksi (C) 
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Bottom flange: fos = fbot = 9.50 ksi (T) 

 

where: 

 

 fs  =  maximum factored major-axis bending stress for constructibility loading at the 

mid-thickness of the flange under consideration for the smaller section at the point 

of the splice; positive for tension, negative for compression (ksi) (see Article 

C6.13.6.1.4b) 

 fos = factored major-axis bending stress for constructibility loading at the mid-

thickness of the other flange at the point of the splice with fs in the flange under 

consideration; positive for tension, negative for compression (ksi) (see Article 

C6.13.6.1.4b) 

 

Using the factored flexural stresses, use the following equations to compute a suggested design 

moment, Muw, and a design horizontal resultant, Huw that will be applied at the mid-depth of the 

web for designing the web splice plates and their connections: 

 

 
ncfcfcfh

2

w

uw fRFR
12

Dt
M       Eq. (C6.13.6.1.4b-1) 

 

  ncfcfcfh
w

uw fRFR
2

Dt
H        Eq. (C6.13.6.1.4b-2) 

 

where: 

 

 tw  =  web thickness of the smaller section at the point of the splice (in.) 

 D = web depth of the smaller section at the point of the splice (in.)  

 Rh = hybrid factor specified in Article 6.10.1.10.1, and is equal to 1.0 in this example 

 Rcf = for checking slip resistance, this ratio is taken as 1.0 as specified in Article 

C6.13.6.1.4b. 

 Fcf  = fs, as specified in Article C6.13.6.1.4b 

 fncf = fos, as specified in Article C6.13.6.1.4b 

  

Therefore, using the vertical web depth of 78 inches, Muw and Huw are computed as: 

 

 
  

    ftkip 487
12

1
9.501.010.981.0

12

780.5625
fRfR

12

Dt
M

2

oscfsh

2
w

uw 







   

 

  
  

     kips 32.59.501.010.981.0
2

780.5625
fRfR

2

Dt
H oscfsh

w

uw    

 

The total factored moment applied to the web splice is the sum of the moment caused by the 

vertical shear, Mv, and the moment computed by Eq. C6.13.6.1.4b-1, Muw: 
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 Mtot = Mv + Muw = 30.5 + 487 = 518 kip-ft 

 

Compute the factored force in each bolt resulting from the vertical shear by dividing the factored 

shear by the number of bolts on one side of the splice: 

 

 kips/bolt 2.44
40

5.97
FShear vert   

 

However, the above bolt force, FShear vert, is in the vertical plane, and must be resolved to the 

inclined plane of the web.  Therefore, the in-plane bolt force is computed as: 

 

 
   

kips/bolt 2.52
04.14cos

44.2

cos

F
F Shearvert

S 





  

 

Compute the in-plane factored force in each bolt resulting from the horizontal force resultant, by 

dividing the factored resultant by the number of bolts on one side of the splice: 

 

 kips/bolt 0.81
40

5.32
FH 


  

 

Compute the in-plane factored vertical component of force in the critical bolt due to the total 

factored moment on the splice, noting that the horizontal distance from the centroid of the bolt 

group to the critical bolt is 1.5 inches: 

 

 
 

   
 

kips/bolt .510
04.14cos

1

18,793

1.512518

cos

1

I

xM
F

p

tot

Mv 




















  

 

Compute the in-plane factored horizontal component of force in the critical bolt due to the total 

factored moment on the splice, noting that the vertical distance from the centroid of the bolt 

group to the critical bolt is 35.625 inches: 

 

 
   

kips/bolt 78.11
18,793

35.62512518

I

yM
F

p

tot

Mh   

 

Compute the resultant in-plane force on the critical bolt: 

 

    2

MhH

2

MvSru FFFFFR   

 

     kips/bolt 12.9511.780.810.512.52R
22

u   

 

Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 

resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
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 Ru = 12.95 kips/bolt < Rr = 39 kips/bolt  OK 

 

7.14.4 Service Limit State 

 

According to the provisions of Article 6.13.6.1.4c, bolted connections for flange splices are to be 

designed as slip-critical connections for the flange design force.  As a minimum, for checking 

slip of the flange splice bolts, the design force for the flange under consideration must be taken 

as the Service II design stress, Fs, times the gross flange area of the flange in the smaller section.  

Fs is calculated as follows: 

 

h

s

s
R

f
F         Eq. (6.13.6.1.4c-6) 

 

where:  

 

 fs = maximum flexural stress due to Load Combination Service II at the mid-thickness 

of the flange under consideration in the smaller section at the point of the splice 

(ksi) 

 Rh = hybrid factor specified in Article 6.10.1.10.1, and is equal to 1.0 in this example 

 

Compute the flexural stresses for the top and bottom flanges at the mid-thickness of the flange, 

for both the negative and positive live load bending cases and using the load factors for the 

Service II load combination from Table 3.4.1-1. 

 

 

 

 

 

Positive live load bending case 

 

        
  (C) ksi 99.812

009,478

57.10221,530.1

505,352

10.244283260.1

384,185

27.42941,14620.1
f flg tops, 
















 

        
  (T) ksi 73.1812

009,478

25.68221,530.1

505,352

72.544283260.1

384,185

55.36941,14620.1
f flgbot s, 














  

 

Negative live load bending case 

 

Note that the flange stresses for the negative live load bending cases are computed 

conservatively, assuming that the negative live load bending moments act on the steel section 

only, and contribution from the longitudinal reinforcement, or concrete deck if applicable, is 

ignored.  Furthermore, to maximize the flange stress for negative live load bending, the bending 

moment due to DW is ignored as well, since it is the opposite sign of the negative live load 

moment and DW is a future loading. 
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  (T) ksi 11.412

384,185

27.42080,330.1

505,352

10.243260.1

384,185

27.42941,14620.1
f flg tops, 







 





 
 

        
  (C) ksi 18.312

384,185

55.36080,330.1

505,352

72.543260.1

384,185

55.36941,14620.1
f flgbot s, 







 



  

 

The above calculations of factored flange stress show that the positive live load bending case 

governs at this field splice for the Service Limit State.  The positive live load bending will be the 

only case considered in the Service Limit State check of the flange field splice bolts. 

 

7.14.4.1 Service Limit State Check of Top Flange Splice Bolts 

 

Flange lateral bending does not need to be considered in checking slip of the top flange bolts at 

the Service Limit State because the flange is continuously braced. 

 

 

Compute the factored force in the top flange using the major-axis bending stress at the mid-

thickness of the flange.  Multiply the factored flange stress by the gross area of the flange to 

check for slip. 

 

 Ftop = (-8.99)(16.0)(1.0) = -144 kips 

 

Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 

dividing the factored flange force by the number of bolts on one side of the splice: 

 

 kips/bolt 12.00
12

144
F  Long 


  

 

 

Check that the factored longitudinal force on each bolt is less than the factored slip resistance of 

one bolt, Rr, calculated previously as 39 kips/bolt: 

 

 FLong = 12.00 kips/bolt < Rr = 39 kips/bolt  OK 

 

7.14.4.2 Service Limit State Check of Bottom Flange Splice Bolts 

 

Compute the Service II factored torques acting on the noncomposite and composite sections 

from the analysis results provided in Table 16.  The negative live load torque is used, as it 

controls over the positive live load torque. 

 

 Factored Noncomposite Torque = 1.0[-36 + (-125)] = -161 kip-ft 

 

 Factored Composite Torque = 1.0[-58 + (-76)] + 1.30[-517] = -806 kip-ft  
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The bottom flange splice bolts should be designed for the combined effects of St. Venant 

torsional shear and major-axis bending moment.  The enclosed area of the noncomposite tub 

girder, Ao, was previously computed to be 7,921 in.
2
  The factored St. Venant torsional shear in 

the bottom flange due to noncomposite loads is computed as: 

 

 
 

 
  kips 9.981

7,9212

12611
b

2A

T
V f

o

flgbot  NC 


  

 

The enclosed area of the composite tub girder, Ao, was previously computed to be 8,750 in.
2
 The 

factored St. Venant torsional shear in the bottom flange due to composite loads is computed as: 

 

 
 

 
  kips 8.4481

8,7502

12806
b

2A

T
V f

o

flgbot  C 


  

 

Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 

produces a lateral moment on the bottom flange bolt group on each side of the splice. The 

factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 

 

  in.-kip 2.246
2

4.5

2

4.5
44.89.9MLAT 








  

 

Compute the factored longitudinal component of force in the critical bolt due to the factored 

lateral moment in the bottom flange, noting that the transverse distance from the centroid of the 

bolt group to the critical bolt is 36.25 inches: 

 

 
 

kips/bolt 45.0
19,859

36.252.246
F lat  Long   

 

Compute the factored transverse component of force in the critical bolt due to the factored lateral 

moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt 

group to the critical bolt is 2.25 inches: 

 

 
 

kips/bolt 03.0
19,859

2.252.246
F lat  Trans   

 

Compute the factored force in the bottom flange using the average major-axis bending stress at 

the mid-thickness of the flange.  Multiply the factored flange stress by the gross area of the 

flange to check for slip. 

 

 Fbot = (18.73)(83.0)(0.625) = 972 kips 

 

Compute the factored longitudinal force in each bolt resulting from the major-axis bending by 

dividing the factored flange force by the number of bolts on one side of the splice: 
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 kips/bolt 24.30
40

972
F   vertLong   

 

Therefore, the total factored longitudinal force in the critical bolt is computed as: 

 

 kips/bolt 75.2430.2445.0F   totLong   

 

Compute the factored transverse force in each bolt resulting from the factored St. Venant 

torsional shear force by dividing the shear force by the number of bolts on one side of the splice: 

 

 
 

kips/bolt 37.1
40

8.449.9
F Shear  Trans 


  

 

Therefore, the total factored transverse force in the critical bolt is computed as: 

 

 kips/bolt 40.103.037.1F   totTrans   

 

Compute the resultant force on the critical bolt: 

 

 kips/bolt 79.2440.175.24FR 22

u   

 

Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 

resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 

 

 Ru = 24.79 kips/bolt < Rr = 39 kips/bolt  OK 

 

7.14.4.3 Service Limit State Check of Web Splice Bolts 

 

According to the provisions of Article 6.13.6.1.4b, bolted connections for web splices are to be 

designed as slip-critical connections for the maximum resultant bolt design force.  As a 

minimum, for checking slip of the web splice bolts, the design shear is to be taken as the shear at 

the point of splice under Load Combination Service II, as specified in Table 3.4.1-1.  

Calculations for the Service Limit State check of the web bolts are not provided herein, but 

would be similar to those carried out for the Constructibility check and would use loads 

combined for the Service II load combination.  Calculations not provided herein show that the 

web splice bolts are satisfactory for the Service Limit State. 

 

7.14.5 Strength Limit State 

 

Bolted splices are designed at the strength limit state to satisfy the requirements specified in 

Article 6.13.1.  In basic terms, Article 6.13.1 indicates that a splice is to be designed for the 

larger of: (a) the average of the factored applied stresses and the factored resistance of the 

member, or (b) 75 percent of the factored resistance of the member.   
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At the strength limit state, splice plates and their connections on the controlling flange are to be 

proportioned to provide a minimum resistance taken as the design stress, Fcf, times the effective 

flange area, Ae, of the controlling flange, where Fcf is defined as: 

 

gyff

gyff
h

cf

cf RF0.75α
2

RFα
R

f

F 



     Eq. (6.13.6.1.4c-1) 

 

in which: 

 

 Ae = effective area of the flange (in.
2
).  For compression flanges, Ae, is to be taken as 

the gross area of the flange Ag.  For tension flanges, Ae is to be taken as: 

 

gn

yty

uu

e AA
F

F
A 


















       Eq. (6.13.6.1.4c-2) 

 

 Rg  =  flange resistance modification factor taken as: 

 

 
 
 

1.0
FαA

FαA
R

SSyfe

LSyfe

g         Eq. (6.13.6.1.4c-3) 

 

   
LSyfeFαA  product of the effective area times αFyf for the flange under consideration 

in the larger section at the point of the splice 

 

   
SSyfeFαA  product of the effective area times αFyf for the flange under consideration 

in the smaller section at the point of the splice 

 

where: 

 

 fcf = maximum flexural stress due to factored loads at the mid-thickness of the 

controlling flange at the point of the splice (ksi) 

 Rh = hybrid factor specified in Article 6.10.1.10.1; for this example is equal to 1.0. 

  = 1.0, except a lower value equal to (Fn/Fyf) may be used for flanges where Fn is less 

than Fyf.   

 f = resistance factor for flexure specified in Article 6.5.4.2 (f = 1.0) 

 Fn = nominal flexural resistance of the flange (ksi) 

 Fyf = specified minimum yield strength of the flange (ksi) 

 u = resistance factor for fracture of tension members specified in Article 6.5.4.2  

   (u = 0.80) 

 y = resistance factor for yielding of tension members specified in Article 6.5.4.2  

   (y = 0.95) 

 An = net area of the tension flange determined as specified in Article 6.8.3 (in.
2
) 
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 Fu = specified minimum tensile strength of the tension flange determined as specified 

in Table 6.4.1-1 (ksi) 

 Fyt = specified minimum yield strength of the tension flange (ksi) 

 

The controlling flange is defined as either the top or bottom flange in the smaller section at the 

point of the splice, whichever flange has the maximum ratio of the elastic flexural stress at its 

mid-thickness due to factored loads for the loading condition under investigation to its factored 

flexural resistance.  The other flange is termed the noncontrolling flange.  In areas of stress 

reversal, the splice must be checked independently for both positive and negative flexure. 

 

Splice plates and their connections on the noncontrolling flange at the strength limit state are to 

be proportioned to provide a minimum resistance taken as the design stress, Fncf, times the 

effective flange area, Ae, of the noncontrolling flange, where Fncf is defined as: 

 

gyff

h

ncf
cfncf RF0.75α

R

f
RF        Eq. (6.13.6.1.4c-4) 

 

where: 

 

 Rcf = the absolute value of the ratio of Fcf to fcf for the controlling flange 

 fncf = flexural stress due to factored loads at the mid-thickness of the noncontrolling 

flange at the point of the splice concurrent with fcf (ksi) 

 Rh = hybrid factor specified in Article 6.10.1.10.1; for this example is equal to 1.0. 

 Rg = flange resistance modification factor determined from Eq. 6.13.6.1.4c-3 

 

First, compute the flexural stresses for the top and bottom flanges at the mid-thickness of the 

flange, for both the negative and positive live load bending cases and using the load factors for 

the Strength I load combination from Table 3.4.1-1. 

 

Positive live load bending case 

 

           
 12

009,478

57.10221,575.1

505,352

10.244285.132625.1

384,185

27.42403,225.1
f flg tops, 













 

 

(C) ksi 50.11f flg tops, 

  

           
 12

009,478

25.68221,575.1

505,352

72.544285.132625.1

384,185

55.36403,225.1
f flgbot s, 













 

 

(T) ksi 72.24f flgbot s, 

  

Negative live load bending case 
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Note that the flange stresses for the negative live load bending cases are computed 

conservatively, assuming that the negative live load bending moments act on the steel section 

only, and contribution from the longitudinal reinforcement is ignored.  Furthermore, to maximize 

the flange stress for negative live load bending, the bending moment due to DW is ignored as 

well, since it is the opposite sign of the negative live load moment and DW is a future loading.  

The minimum load factor for component dead load, 0.9, as specified in Table 3.4.1-2 is used as 

well, in order to maximize the negative live load effects. 

 

        
 12

384,185

27.42080,375.1

505,352

10.2432690.0

384,185

27.42403,290.0
f flg tops, 







 


 

 

(T) ksi 59.8f flg tops, 

  

        
 12

384,185

55.36080,375.1

505,352

72.5432690.0

384,185

55.36403,290.0
f flgbot s, 







 


 

 

(C) ksi 09.7f flgbot s, 

  

As specified in Article C6.13.6.1.4c, in areas of stress reversal, which is the case for this field 

splice, the splice must be independently checked for both positive and negative flexure.   

 

In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section 

distortion in horizontally curved tub girders may be ignored when checking the splices in the top 

and bottom flanges at the strength limit state. 

 

7.14.5.1 Positive Flexure Strength Limit State Design Forces 

 

Compute the effective flange areas, Ae, of the top and bottom flanges, as these areas will be used 

in subsequent computations.  Since the top flange is in compression for positive flexure, in 

accordance with Article 6.13.6.1.4c, the effective top flange area is equal to the gross area of the 

flange, Ag: 

 

 Ae,top flg = Ag = (16.0)(1.0) = 16.0 in.
2
 

 

The bottom flange is in tension for positive flexure, therefore the effective area of the flange 

must consider the net area of the flange, An, and be computed in accordance with Eq. 

6.13.6.1.4c-2: 
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       Eq. (6.13.6.1.4c-2) 

 

The net area of the bottom flange is computed in accordance with Article 6.8.3, which states that 

the net area, An, of an element is the product of the thickness of the element and its smallest net 
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width.  The width of each standard bolt hole shall be taken as the nominal diameter of the hole.  

Therefore, the net area of the bottom flange at the location of the splice is computed as: 

 

 An,bot flg = [83.0 – 20 (0.875 + 0.0625)](0.625) = 40.1 in.
2
 

 

The effective area of the bottom flange is then computed as: 
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uu
flgbot  e, in. 51.90.62583.0Ain. 43.940.1
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flgbot  e, in. 43.9A   

 

For the positive live load bending case, the controlling flange is the bottom flange since it has the 

largest ratio of the flexural stress to the corresponding critical flange stress.  Therefore, the 

design stress, Fcf, is computed in accordance with Eq. 6.13.6.1.4c-1.  However, first compute the 

flange resistance modification factor, Rg, for the bottom flange, noting that α = 1.0 for flanges in 

tension.  Since the effective areas of the adjoining flanges are equal and the yield strengths are 

equal, [αAeFyf]LS = [αAeFyf]SS and Rg = 1.0 

 

    
ksi 37.36
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     ksi 37.500.1501.01.00.75RF0.75αF gyffcf     

 

Therefore, Fcf is taken as 37.50 ksi. 

 

For the positive live load bending case, the minimum design force for the controlling flange 

(bottom flange), Pcf, is taken equal to Fcf times the effective area, Ae, of the controlling flange.    

The minimum design force, Pcf, is computed as: 

 

 Pcf = Fcf Ae,bot flg = (37.50) (43.9) = 1,646 kips (T) 

 

For the positive live load bending case, the minimum design stress for the noncontrolling flange 

(top flange), Fncf, is computed in accordance with Eq. (6.13.6.1.4c-4).  First, it is necessary to 

compute Rcf, the absolute value of the ratio of Fcf to fcf for the controlling flange: 

 

52.1
72.24

50.37

f

F
R

cf

cf

cf      

 

Compute Fncf, in accordance with Eq. (6.13.6.1.4c-4): 
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  ksi 17.48
1.0

11.50
1.52
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f
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h

ncf

cfncf 


    

 

     ksi 37.501.0501.01.00.75RF0.75αF gyffncf      

 

Therefore, Fncf is taken as 37.50 ksi. 

 

For the positive live load bending case, the minimum design force for the noncontrolling flange 

(top flange), Pncf, is taken equal to Fncf times the effective area, Ae, of the noncontrolling flange.  

The minimum design force, Pncf, is computed as: 

 

 Pncf = Fncf Ae,top flg = (37.50) (16.0) = 600 kips (C) 

 

7.14.5.2 Negative Flexure Strength Limit State Design Forces 

 

Compute the effective flange areas, Ae, of the top and bottom flanges, as these will be used in 

subsequent computations.  Since the bottom flange is in compression for negative flexure, as 

specified in Article 6.13.6.1.4c, the effective bottom flange area is equal to the gross area of the 

flange, Ag: 

 

 Ae,bot flg = Ag = (83.0)(0.625) = 51.88 in.
2
 

 

The top flange is in tension for negative flexure, therefore the effective area of the flange must 

consider the net area of the flange, An, and be computed in accordance with Eq. 6.13.6.1.4c-2: 
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       Eq. (6.13.6.1.4c-2) 

 

The net area of the top flange is computed in accordance with Article 6.8.3.  The width of each 

standard bolt hole is to be taken as the nominal diameter of the hole.  Therefore, the net area of 

the top flange at the location of the splice is computed as: 

 

 An,top flg = [16 – 4 (0.875 + 0.0625)](1.0) = 12.25 in.
2
 

 

The effective area of the top flange is then computed as: 
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2

flg  tope, in. 41.31A   

 

For the negative live load bending case, the controlling flange is top flange since it has the 

largest ratio of the flexural stress to the corresponding critical flange stress.  Therefore, the 
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design stress, Fcf, is computed in accordance with Eq. 6.13.6.1.4c-1.  However, first compute the 

flange resistance modification factor, Rg, for the bottom flange, noting that α = 1.0 for tension 

flanges.  Since the effective areas of the adjoining flanges are equal and the yield strengths are 

equal, [αAeFyf]LS = [αAeFyf]SS and Rg = 1.0 
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     ksi 37.500.1501.01.00.75RF0.75αF gyffcf     

 

Therefore, Fcf is taken as 37.50 ksi. 

 

For the negative live load bending case, the minimum design force for the controlling flange (top 

flange), Pcf, is taken equal to Fcf times the effective area, Ae, of the controlling flange.    The 

minimum design force, Pcf, is computed as: 

 

 Pcf = Fcf Ae,top flg = (37.50) (13.41) = 503 kips (T) 

 

For the negative live load bending case, the minimum design stress for the noncontrolling flange 

(bottom flange), Fncf, is computed in accordance with Eq. 6.13.6.1.4c-4.  First, it is necessary to 

compute Rcf, the absolute value of the ratio of Fcf to fcf for the controlling flange: 

 

37.4
59.8

50.37

f

F
R

cf

cf

cf      

 

Compute Fncf, in accordance with Eq. (6.13.6.1.4c-4): 

 

  ksi 30.98
1.0

09.7
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     ksi 37.500.1501.01.00.75RF0.75αF gyffncf      

 

Therefore, Fncf is taken as 37.50 ksi. 

 

For the negative live load bending case, the minimum design force for the noncontrolling flange 

(bottom flange), Pncf, is taken equal to Fncf times the effective area, Ae, of the noncontrolling 

flange.    The minimum design force, Pncf, is computed as: 

 

 Pncf = Fncf Ae,bot flg = (37.50) (51.88) = 1,946 kips (C) 
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7.14.5.3 Summary of Flexure Strength Limit State Design Forces 

 

A summary of the factored design forces for the bottom and top flange splices at the strength 

limit state is as follows: 

 

 Top Flange: Pncf = 600 kips (C) 

  Pcf = 503 kips (T) 

 

 Bottom Flange: Pcf = 1,646 kips (T) 

  Pncf = 1,946 kips (C) 

 

7.14.5.4 Strength Limit State Check of Top Flange Splice Bolts 

 

St. Venant torsional shear is not considered in the top flanges of tub girders.  The composite deck 

is assumed to resist the majority of the torsional shear acting on the top of the tub girder once the 

section is closed.  Flange lateral bending in the top flange is also not considered after the deck 

has hardened and the flange is continuously braced.   

 

Therefore, compute the factored longitudinal force in each bolt resulting from the major-axis 

bending by dividing the governing flange design force by the number of bolts on one side of the 

splice: 

 

 kips/bolt 00.05
12

600

12

P
FR ncf

bolt flg topu   

 

Check that the factored bolt force, Ru is less than the factored shear resistance of one bolt, Rr, 

calculated previously as 55.4 kips/bolt: 

 

 Ru = 50.00 kips/bolt < Rr = 55.4 kips/bolt  OK 

 

Since a fill plate is not required for the top flange splice, no reduction in the bolt design shear 

resistance is required as specified in Article 6.13.6.1.5. 

 

7.14.5.5 Strength Limit State Check of Bottom Flange Splice Bolts 

 

Determine the St. Venant torsional shear in the bottom flange of the tub girder at the strength 

limit state.  As discussed previously, the longitudinal warping stresses do not need to be 

considered in the design of bolted box flange splices (bottom flange of tub) at the strength limit 

state.  Compute the Strength I factored torques acting on the noncomposite and composite 

sections from the analysis results provided in Table 16.  The negative live load torque is used, as 

it controls over the positive live load torque. 

 

 Factored Noncomposite Torque = 1.25[-36 + (-125)] = -201 kip-ft 

 

 Factored Composite Torque = 1.25(-58) + 1.5(-76) + 1.75(-517) = -1,091 kip-ft  
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The enclosed area of the noncomposite tub girder, Ao, was previously computed to be 7,921 in.
2
  

The factored St. Venant torsional shear in the bottom flange due to the noncomposite loads is 

computed as: 

 

 
 

 
  kips 3.2181

7,9212

12201
b

2A

T
V f

o

flgbot  NC 


  

 

The enclosed area of the composite tub girder, Ao, was previously computed to be 8,750 in.
2
  The 

factored St. Venant torsional shear in the bottom flange due to the composite loads is computed 

as: 

 

 
 

 
  kips 6.6081

8,7502

12091,1
b

2A

T
V f

o

flgbot  C 


  

 

Therefore, the total factored St. Venant torsional shear force at the centerline of the splice is 

computed as: 

 

 Vtot = 12.3 + 60.6 = 72.9 kips 

 

Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 

produces a lateral moment on the bottom flange bolt group on each side of the splice. The 

factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 

 

  in.-kip 1.328
2

4.5

2

4.5
9.72MLAT 








  

 

It should be noted that in accordance with Article C6.13.6.1.4c, at the strength limit state, the 

factored torsional shear does not need to be multiplied by the factor, Rcf, when computing the 

moment in the splice due to the torsional shear. 

 

Compute the factored longitudinal component of force in the critical bolt due to the factored 

lateral moment in the bottom flange, noting that the transverse distance from the centroid of the 

bolt group to the critical bolt is 36.25 inches, and the polar moment of inertia of the bolt group, 

Ip, was previously computed as 19,859 in.
2
: 

 

 
 

kips/bolt 60.0
19,859

36.251.328
F lat  Long   

 

Compute the factored transverse component of force in the critical bolt due to the factored lateral 

moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt 

group to the critical bolt is 2.25 inches: 

 

 
 

kips/bolt 04.0
19,859

2.251.328
F lat  Trans   
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Compute the factored longitudinal force in each bolt resulting from the major-axis bending by 

dividing the governing design flange force by the number of bolts on one side of the splice: 

 

 kips/bolt 65.48
40

946,1

40

P
F cf

bolt flgbot   

 

Therefore, the total factored longitudinal force in the critical bolt is computed as: 

 

 kips/bolt 25.4965.4860.0F   totLong   

 

Compute the factored transverse force in each bolt resulting from the factored St. Venant 

torsional shear force by dividing the shear force by the number of bolts on one side of the splice: 

 

 
 

kips/bolt 82.1
40

9.72
F Shear  Trans   

 

Therefore, the total factored transverse force in the critical bolt is computed as: 

 

 kips/bolt 86.104.082.1F   totTrans   

 

Compute the resultant force on the critical bolt: 

 

 kips/bolt 29.4986.125.49FR 22

u   

 

Check that the factored bolt force, Ru is less than the factored shear resistance of one bolt, Rr, 

calculated previously as 55.4 kips/bolt: 

 

 Ru = 49.29 kips/bolt < Rr = 55.4 kips/bolt  OK 

 

Since a fill plate is not required for the bottom flange splice, no reduction in the bolt design shear 

resistance is required as specified in Article 6.13.6.1.5. 

 

7.14.5.6 Strength Limit State Check of Web Splice Bolts 

 

In accordance with Article 6.13.6.1.4b, web splice plates and their connections are to be 

designed for shear, the moment due to the eccentricity of the shear at the point of the splice, and 

the portion of the flexural moment assumed to be resisted by the web at the point of the splice.  

Additionally, for horizontally curved tub girders, the shear is to be taken as the sum of the 

flexural and St. Venant torsional shears in the web.  Also, for inclined webs, the web splice and 

connections are to be designed for the component of shear in the plane of the web.   

 

For this design example, only the positive live load bending case will be used to illustrate the 

check of the web splice for the strength limit state. 
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As a minimum, at the strength limit state, the design shear, Vuw, is to be taken as follows: 

 

If Vu < 0.5 vVn, then: 

 

Vuw = 1.5Vu        Eq. (6.13.6.1.4b-1) 

 

Otherwise: 

 

 
2

VV
V nvu

uw


        Eq. (6.13.6.1.4b-2) 

 

where:  

 

 v = resistance factor for shear specified in Article 6.5.4.2 (v = 1.0) 

 Vu = factored shear at the point of the splice (kip) 

 Vn = nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3 

for unstiffened and stiffened webs, respectively (kip) 

 

Determine the vertical design shear, Vuw, for the web splice design according to the provisions of 

Article 6.13.6.1.4b.   

 

First, compute the Strength I factored girder shear, Vu, from the analysis results provided in 

Table 16.  The girder shear provided in Table 16 is the summation of the flexural shear and St. 

Venant torsional shear in the critical web, therefore additional calculations for the torsional shear 

in the web are not required.  By inspection, the negative live load shear case governs. 

 

 Vu = |1.25 [-17 + (-69) + (-12)] + 1.5 (-16) + 1.75 (-85)| = 295 kips 

 

Compute the shear in the plane of the web. 

 

 
 

kips 304
14.04cos

295
Vui 


   

 

Compute the nominal shear resistance of the 0.5625-inch-thick web at the splice according to the 

provisions of Articles 6.10.9.2 and 6.10.9.3 for unstiffened and stiffened webs, respectively.  For 

this design example, separate calculations indicate that transverse stiffeners are required at the 

splice, therefore Article 6.10.9.3 is employed.  A stiffener spacing equal to the internal cross 

frame spacing used on Girder G2 is assumed, where do = 196 inches. 

 

It is necessary to compute the nominal shear resistance, Vn, in order to determine the appropriate 

design shear, Vuw.  The nominal shear resistance of an interior web panel is computed in 

accordance with Article 6.10.9.3.2.  First, determine if Eq. 6.10.9.3.2-1 is satisfied. 

 

According to Article 6.11.9, for box flanges, bfc (in this case) is to be taken as one-half the 

effective flange width between webs in checking Eq. 6.10.9.3.2-1, but not to exceed 18 times the 
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thickness of the box flange. Therefore, (81.0/2) = 40.5 in. > 18(0.625) = 11.25 in.  Use bfc = 

11.25 in. to check Eq. 6.10.9.3.2-1 as follows: 

 

 
5.2

tbtb

Dt2

ftftfcfc

w 


       Eq. (6.10.9.3.2-1) 
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Since Eq. 6.10.9.3.2-1 is not satisfied, the nominal shear resistance, Vn, is computed in 

accordance with Eq. (6.10.9.3.2-8). 
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pn      Eq. (6.10.9.3.2-8) 

 

where: 

 

 Vn = nominal shear resistance of the web panel (kip) 

 Vp = plastic shear force (kip) 

 C = ratio of shear-buckling resistance to the shear yield strength 

 do = transverse stiffener spacing (in.) 

 

The plastic shear force, Vp, is computed according to Eq. 6.10.9.3.2-3 as follows: 

 

Vp = 0.58 Fyw D tw       Eq. (6.10.9.3.2-3) 

 

Determine which equation is to be used to compute the ratio of shear-buckling resistance to the 

shear yield strength, C.  
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     Eq. (6.10.9.3.2-7) 

 

Since: 
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C        Eq. (6.10.9.3.2-6) 
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Vp is the plastic shear force and is calculated as follows: 

 

 wywp  tD F 0.58V         Eq. (6.10.9.3.2-3) 

 

     kips 1,3120.562580.4050.0 0.58Vp   

 

Therefore, 
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Checking compliance with Eq. 6.10.9.1-1: 

 

    kips 5085081.0Vkips 043V nvui   OK  

 

Since Vui = 304 kips > 0.5vVn = 254 kips, the design shear, Vuw, is computed in accordance 

with Eq. 6.13.6.1.4b-2: 

 

Vuw =
   

kips406
2

)508)(0.1(304

2

VV nvui 





   Eq. (6.13.6.1.4b-2) 

 

The moment, Muv, due to the eccentricity of the design shear, Vuw, from the centerline of the 

splice to the centroid of the web splice bolt group is computed as follows: 

 

 Muv = Vuw e 

 

   ftkip 127
12

1

2

4.5

2

3
406Muv 
















  

 

Determine the portion of the design moment resisted by the web, Muw, and the design horizontal 

force resultant in the web, Huw, according to the recommended provisions of Article 
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C6.13.6.1.4b.  Muw and Huw are applied at the mid-depth of the web.  Separate calculations, not 

shown, indicate that the positive live load bending case controls the design of the web splice. 

 

As computed previously for the positive live load bending case: 

 

 fcf  =  24.72 ksi 

 Fcf  =  37.50 ksi 

 fncf  =  -11.50 ksi 

 Rcf  =  1.52 

 

Using the above values, use the following equations to compute a suggested design moment, 

Muw, and a design horizontal resultant, Huw that will be applied at the mid-depth of the web for 

designing the connections: 

 

 
ncfcfcfh
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uw fRFR
12

Dt
M       Eq. (C6.13.6.1.4b-1) 
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  ncfcfcfh
w

uw fRFR
2

Dt
H        Eq. (C6.13.6.1.4b-2) 

 

 
  

       kips 43911.501.5237.501.0
2

78.00.5625
H uw     

 

The total factored moment applied to the web splice is the sum of the moment caused by the 

vertical shear, Mv, and the moment computed by Eq. C6.13.6.1.4b-1, Muw: 

 

 Mtot = Muv + Muw = 127 + 1,307 = 1,434 kip-ft 

 

Compute the factored force in each bolt resulting from the vertical shear, by dividing the factored 

shear by the number of bolts on one side of the splice: 

 

 kips/bolt 15.10
40

406

N

V
F

b

uw
Shear vert   

 

However, the above bolt force, FShear vert, is in the vertical plane, and must be resolved to the 

inclined plane of the web.  Therefore, the in-plane bolt force is computed as: 

 

 
   

kips/bolt 46.10
04.14cos
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F
F Shearvert
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Compute the in-plane factored force in each bolt resulting from the horizontal force resultant, 

Huw, by dividing the factored resultant by the number of bolts on one side of the splice: 

 

 kips/bolt 98.01
40

439

N

H
F

b

uw

H   

 

Compute the in-plane factored vertical component of force in the critical bolt due to the total 

factored moment on the splice, noting that the horizontal distance from the centroid of the bolt 

group to the critical bolt is 1.5 inches: 

 

 
 

   
 

kips/bolt 42.1
04.14cos

1

18,793

1.512434,1

cos

1

I

xM
F

p

tot
Mv 





















  

 

Compute the in-plane factored horizontal component of force in the critical bolt due to the total 

factored moment on the splice, noting that the vertical distance from the centroid of the bolt 

group to the critical bolt is 35.625 inches: 

 

 
   

kips/bolt 62.32
18,793

35.62512434,1

I

yM
F

p

tot
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Compute the resultant in-plane force on the critical bolt: 
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MhH

2

MvSru FFFFFR   

 

     kips/bolt 2.5462.2398.0142.146.10R
22

u   

 

Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 

resistance of one bolt, Rr, calculated previously as 55.4 kips/bolt: 

 

 Ru = 45.2 kips/bolt < Rr = 55.4 kips/bolt  OK 

 

7.14.5.7 Strength Limit State Check of Top Flange Splice Plates 

 

The width of the outside splice plate should be at least as wide as the width of the narrowest 

flange at the splice.  In the case of this design example, the width of the top flange is the same on 

either side of the splice.  Therefore, the following top flange splice plates are used: 

  

 Outer plate: 0.5 in. by 16.0 in. plate, Grade 50 Steel 

 Inner plates: Two 0.625 in. by 6 in. plates, Grade 50 Steel 

 

As discussed in Article C6.13.6.1.4c, if the combined area of the inner splice plates is within 10 

percent of the area of the outside plate, then both the inner and outer plates may be designed for 

one-half of the flange design force.  Such is the case for this top flange splice.  Also, since this 
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10 percent provision is satisfied, double shear can be assumed in designing the connections.  If 

the areas differ by more than 10 percent, the design force in each splice plate and its connection 

at the strength limit state should be determined by multiplying the flange design force by the 

ratio of the area of the splice plate under consideration to the total area of the inner and outer 

splice plates.  In this case, the shear resistance of the connection would be checked for the 

maximum calculated splice plate force acting on a single shear plane. 

 

Article 6.13.5.2 specifies that splice plates in tension at the strength limit state are to be 

investigated for yielding on the gross section, fracture on the net section, and block shear rupture.  

Article 6.13.6.1.4c  specifies that the design force for splice plates subjected to compression is 

not to exceed the factored resistance, Rr, in compression taken as: 

 

 Rr = c Fy As        Eq. (C6.13.6.1.4c-5) 

 

where: 

 

 c = resistance factor for compression specific in Article 6.5.4.2 (c = 0.95) 

 Fy = specified minimum yield strength of the splice plate (ksi) 

 As = gross area of the splice plate (in.
2
) 

 

Flange lateral bending is ignored for the top flange splice plates at the strength limit state 

because the flange is continuously braced by the hardened concrete deck.  St. Venant torsional 

shears are also typically ignored in the design of the top flanges of tub girders once the flange is 

continuously braced by the hardened concrete deck, as the deck is assumed to resist the majority 

of torsional shear acting on the top of the tub girder.  Therefore, St Venant torsional shear is not 

considered in the design of the top flange splice plates.  Lastly, as discussed previously, 

longitudinal warping stresses due to cross-section distortion may be ignored at the strength limit 

state for the design of the top and bottom flange splices. 

 

For the positive live load bending case, the top flange is the noncontrolling flange and is 

subjected to compression.  The total design force was previously computed as 600 kips.  The 

factored compressive resistance, Rr, is computed in accordance with Eq. C6.13.6.1.4c-5: 

 

 Rr = c Fy As        Eq. (C6.13.6.1.4c-5) 

 

For the outer top flange splice plate: 

 

      kips 300
2

600
kips 38016.00.5500.95Rr   OK 

  

For the two inner top flange splice plates: 

 

       kips 300
2

600
kips 3566.00.6252500.95Rr 

 
 OK 
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For the negative live load bending case, the top flange is the controlling flange and is subjected 

to tension.  The total design force was previously computed as 503 kips.  As specified in Article 

6.8.2.1, the factored tensile resistance of the splice plates, Pr, is taken as the lesser of the 

resistances given by following two equations: 

 

 Pr = y Pny = y Fy Ag       Eq. (6.8.2.1-1) 

 

 Pr = u Pnu = u Fu An Rp U      Eq. (6.8.2.1-2) 

 

where: 

 

 Pny = nominal tensile resistance for yielding in the gross section (kip) 

 Fy = specified minimum yield strength (ksi) 

 Ag = gross cross-sectional area of the member (in.
2
) 

 Fu = tensile strength (ksi) 

 An = net area of the member as specified in Article 6.8.3 (in.
2
), but not to be taken 

greater than 85 percent of the gross area of the splice plate as specified in Article 

6.13.5.2 

 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size and 

1.0 for bolt holes drilled full size or subpunched and reamed to size; 1.0 is 

assumed for this design example 

 U = reduction factor for shear lag to be taken as 1.0 for splice plates as specified in 

Article 6.13.5.2 

 y = resistance factor for yielding of tension members as specified in Article 6.5.4.2 

(y = 0.95) 

 u = resistance factor for fracture of tension members as specified in Article 6.5.4.2  

   (u = 1.0) 

 

Compute the net area, An, for the outer and inner splice plates. 

 

Outer splice plate:  

 
       2

g

2

n in. 6.80.5016.00.850.85Ain. 6.130.500.06250.875416.0A   

 

Inner splice plates:  

 
        2

g

2

n in. 6.40.6256.020.850.85Ain. 16.50.6250.06250.87526.02A   

 

Compute the factored tensile resistance of the outer splice plate: 

 

 Pr = y Pny = y Fy Ag = 0.95 (50) (16.0) (0.50) = 380 kips 

 

 Pr = u Pnu = u Fu An Rp U = 0.80 (65) (6.13) (1.0) (1.0) = 319 kips 

 

Compute the factored tensile resistance of the inner splice plates: 

 

 Pr = y Pny = y Fy Ag = 0.95 (50) (2) (6.0) (0.625) = 356 kips 
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 Pr = u Pnu = u Fu An Rp U = 0.80 (65) (5.16) (1.0) (1.0) = 268 kips 

 

Check that the minimum resistance provided by the splice plates, 268 kips, is more than one-half 

the design force: 

 

 kips 522
2

503
kips 268Pr 

 
 OK 

 

7.14.5.8 Strength Limit State Check of Top Flange Splice Plates - Bearing 

 

Check the bearing of the bolts on the connected material at the strength limit state for the design 

force of 600 kips in the top flange.  The design bearing resistance, Rn, is computed in accordance 

with Article 6.13.2.9. Check the outer splice plate as it is thinner than the inner plates, and check 

the top flange of the girder itself. 

 

For the outer plate, calculate the clear distance between holes and the clear end distance and 

compare to 2.0d (d = bolt diameter) to determine the equation to be used to compute the bearing 

resistance. 

 

The center-to-center distance between the bolts in the direction of the force is 3.0 in.  Therefore: 

 

 Clear distance between holes = 3.0 – 0.9375 = 2.06 in. 

 

For the four bolts adjacent to the end of the splice plate, the end distance is assumed to be 1.5 in.  

Therefore, the clear distance between the edge of the holes and the end of the splice plate is: 

 

 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 

 

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 

less than 2.0d, Eq. 6.13.2.9-2 is to be used to compute the nominal bearing resistance, Rn: 

 

 Rn = 1.2 Lc t Fu = 1.2(1.03)(0.50)(65) = 40.2 kips/bolt 

 

The factored bearing resistance, Rr, is computed as: 

 

Rr = bbRn         Eq. (6.13.2.2-2) 

 

where:  

 

 bb  =  resistance factor for bolts bearing on material specified in Article 6.5.4.2 (bb = 

0.80) 

 

Therefore, for the outer splice plate, the factored bearing resistance at a single bolt hole is: 

 

 Rr = bbRn = (0.80)(40.2) = 32.2 kips/bolt 
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For the outer plate, the factored bearing resistance for the connection is computed by multiplying 

the single bolt hole resistance by the number of bolts in the connection. Check this total 

resistance against the force in the outer plate, which is one-half of the design force of 600 kips: 

 

    kips 300
2

600
kips 386kips/bolt 32.2bolts 12Pr 

 
 OK 

 

For the girder top flange itself, calculate the clear distance between holes and the clear end 

distance and compare to 2.0d to determine the equation to be used to compute the bearing 

resistance. 

 

The center-to-center distance between the bolts in the direction of the force is 3.0 in.  Therefore: 

 

 Clear distance between holes = 3.0 – 0.9375 = 2.06 in. 

 

For the four bolts adjacent to the end of the girder at the splice, the end distance is conservatively 

assumed to be 1.5 in. (actual end distance is 3.0 in. per Figure 19).  Therefore, the clear distance 

between the edge of the holes and the edge of the girder is: 

 

 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 

 

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 

less than 2.0d, Eq. 6.13.2.9-2 is to be used to compute the nominal bearing resistance, Rn: 

 

 Rn = 1.2 Lc t Fu = 1.2(1.03)(1.0)(65) = 80.3 kips/bolt 

 

Therefore, for the girder top flange, the factored bearing resistance at a single bolt hole is: 

 

 Rr = bbRn = (0.8)(80.3) = 64.2 kips/bolt 

 

For the top flange, the factored bearing resistance for the connection is computed by multiplying 

the single bolt hole resistance by the number of bolts in the connection. Check this total 

resistance against the force in the top flange, which is equal to 600 kips: 

 

 Pr = (12 bolts)(64.2 kips/bolt) = 770 kips > 600 kips  OK 

 

7.14.5.9 Strength Limit State Check of Bottom Flange Splice Plates 

 

The following bottom flange splice plates are used: 

  

 Outer plate: 0.375 in. by 75.5 in. plate, Grade 50 Steel 

 Inner plates: Two 0.375 in. by 36.75 in. plates, Grade 50 Steel 

 

Since the inner splice plate must be partially split to accommodate the longitudinal stiffener on 

the Field Section 2 side of the splice, as shown in Figure 20, the plate is conservatively treated as 
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two separate plates in the subsequent calculations although this is physically not the case.  The 

combined area of the inner splice plates is within 10 percent of the area of the outside plate, 

therefore the inner and outer plates may be designed for one-half of the flange design force. 

 

For the positive live load bending case, the bottom flange is the controlling flange with a design 

force of 1,646 kips in tension.  For the negative live load bending case, the bottom flange is the 

noncontrolling flange with a design force of 1,946 kips in compression.  The St. Venant torsional 

shear was computed previously for the bottom flange bolt design at the strength limit state.  The 

factored moment resulting from the eccentricity of the torsional shear on the bolt group was 

computed as 328.1 kip-in. 

 

Flange splice plates subject to compression at the strength limit state are checked for yielding on 

the gross section at the strength limit state, in accordance with Eq. C6.13.6.1.4c-5.  In the case of 

the bottom flange, the flange should be checked for the combined applied stress due to the flange 

design compression force and lateral bending caused by eccentricity of the torsional shear. For 

yielding of the bottom flange splice plates, the total combined stress on the splice plates can be 

computed as: 

 

 
g SPL,

LAT

g SPL,

ForceDesign 

(C) flgbot 
S

M

A

P
f 

 
  

 

where: 

 

 ASPL,g = gross cross-sectional area of the splice plates (in.
2
) 

 MLAT = moment resulting from eccentricity of the torsional shear (kip-in.) 

 SSPL,g = gross lateral section modulus of the splice plates (in.
3
) 

 

The gross area of the bottom flange splice plates is computed as: 

 

       2

g SPL, in. 55.936.750.375275.50.375A    

 

The gross lateral section modulus of the outer and inner splice plates is computed as: 

 

         
3

233

gSPL, in. 713

2

75.5

19.37536.750.375236.750.375
12

1
275.50.375

12

1

S 




















 
 

 

Compute the total combined stress acting on the outer and inner bottom flange splice plates: 

 

 ksi 35.3
713

328.1

55.9

1,946
f (C) flgbot 
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Check that the total combined stress is less than the factored compressive resistance in terms of 

stress, as specified in Eq. C6.13.6.1.4c-5: 

 

    ksi 5.74500.95Fksi 35.3f yc(C) flgbot   OK 

 

Flange splice plates subject to tension at the strength limit state are investigated for yielding on 

the gross section and fracture on the net section.  First, check yielding on the gross section for the 

tension design force.  Compute the total combined stress on the splice plates as: 

 

 ksi 9.92
713

328.1

55.9

1,646

S

M

A

P
f

SPL

LAT

g SPL,

ForceDesign 

yield (T), flgbot 
 
  

 

Check that the total combined stress is less than the factored tension resistance in terms of stress, 

as specified in Eq. 6.8.2.1-1: 

 

    ksi 47.5500.95Fksi 9.92f yyyield (T), flgbot   OK 

 

For fracture on the net section, the combined stress in the bottom flange splice plates can be 

computed as: 

 

 
n,SPL

LAT

n SPL,

ForceDesign 

frac (T), flgbot 
S

M

A

P
f 

 
  

 

where: 

 

 ASPL,n = net cross-sectional area of the splice plates (in.
2
) 

 SSPL,n = net lateral section modulus of the splice plates (in.
4
) 

 

The net cross section areas of the outer and inner splice plates are computed as: 

 

Outer plate:     2

nSPL, in. 21.280.3750.06250.8752075.5A 
 

  

 

Inner plates:     2

nSPL, in. 20.530.3750.06250.8751075.632A 
 

  

 

Total:  2

nSPL, in. 41.8153.2028.21A 
 

  

 

According to Article 6.13.5.2, for splice plates subjected to tension, An must not exceed 0.85Ag.  

Verify that is provision is satisfied: 

 

Outer plate:    22

nSPL, in. 24.070.37575.50.85in. 21.28A 
 

 OK 

 

Inner plates:     22

nSPL, in. 23.430.37536.7520.85in. 20.53A 
 

OK 
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Total:  22

nSPL, in. 47.523.4324.07in. 41.81A 
 

 OK 

 

The net lateral section modulus of the outer and inner splice plates, SSPL,n, can be computed as 

follows: 

 

 
c

dAI

S

bN

1i

2

ihgSPL,

nSPL,



 

 
  

 

where: 

 

 ISPL,g = gross lateral moment of inertia of the splice plates (in.
2
) 

 Ah = area of a single bolt hole (in.
2
) 

 di = distance from center of bolt hole to lateral neutral axis (in.) 

 c = distance from lateral neutral axis to edge of splice plates (in.) 

 

          4233

gSPL, in. 26,89819.37536.750.37536.750.375
12

1
275.50.375

12

1
I 




























 
 

 

   222222
N

1i

2

ih 25.215.1775.130.1025.65.2[9375.0375.02dA
b


  

 

    ]25.365.3275.2825 2222 
 

 

3
N

1i

2

ih in. 455,3dA
b


  

 

 

Therefore, SSPL,n, is computed as: 

 

 
4

nSPL, in. 621

2

75.5

455,326,898
S 




 
  

 

The combined stress in the bottom flange, for checking fracture, is then computed as: 

 

 ksi 9.93
621

328.1

41.81

1,646

S

M

A

P
f

nSPL,

LAT

n SPL,

ForceDesign 

frac (T), flgbot 
 

  

 

Check that the total combined stress is less than the factored tension resistance for fracture, in 

terms of stress as specified in Eq. 6.8.2.1-2: 

 

      ksi 0.250.10.1650.80URFksi 39.9f puufrac (T), flgbot   OK 

 

7.14.5.10 Strength Limit State Check of Bottom Flange Splice Plates - Bearing 
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Check the bearing of the bolts on the connected material at the strength limit state for the design 

force of 1,946 kips in the bottom flange.  The design bearing resistance, Rn, is computed in 

accordance with Article 6.13.2.9. Check the outer splice plate as it is the same thickness as the 

inner plates, and check the bottom flange of the girder itself. 

 

For the outer plate, calculate the clear distance between holes and the clear end distance and 

compare to 2.0d (d = bolt diameter) to determine the equation to be used to compute the bearing 

resistance. 

 

The center-to-center distance between the bolts in the direction of the force is 4.5 in.  Therefore: 

 

 Clear distance between holes = 4.5 – 0.9375 = 3.56 in. 

 

For the 20 bolts adjacent to the end of the splice plate, the end distance is assumed to be 1.5 in.  

Therefore, the clear distance between the edge of the holes and the end of the splice plate is: 

 

 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 

 

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 

less than 2.0d, Eq. 6.13.2.9-2 is to be used to compute the nominal bearing resistance, Rn: 

 

 Rn = 1.2 Lc t Fu = 1.2(1.03)(0.375)(65) = 30.1 kips/bolt 

 

The factored bearing resistance, Rr, is computed as: 

 

Rr = bbRn         Eq. (6.13.2.2-2) 

 

where:  

 

 bb  =  resistance factor for bolts bearing on material specified in Article 6.5.4.2 (bb = 

0.80) 

 

Therefore, for the outer splice plate, the factored bearing resistance at a single bolt hole is: 

 

 Rr = bbRn = (0.80)(30.1) = 24.1 kips/bolt 

 

For the outer plate, the factored bearing resistance for the connection is computed by multiplying 

the single bolt hole resistance by the number of bolts on one side of the connection. Check this 

total resistance against the force in the outer plate, which is one-half of the design force of 1,946 

kips: 

 

    kips 739
2

1,946
kips 649kips/bolt 24.1bolts 40Pr 

 
 Say OK 
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The factored bearing resistance of the outer and inner plates can be increased by slightly 

increasing the clear end distance of the bolts adjacent to the end of the splice plate.  For example, 

if the end distance is increased from 1.5 in. to 1.75 in., the clear end distance (Lc) is 1.28 in., and 

Rr is 30.0 kips/bolt, resulting in a total connection factored bearing resistance of 1,200 kips. 

 

For the girder bottom flange itself, calculate the clear distance between holes and the clear end 

distance and compare to 2.0d to determine the equation to be used to compute the bearing 

resistance. 

 

The center-to-center distance between the bolts in the direction of the force is 4.5 in.  Therefore: 

 

 Clear distance between holes = 4.5 – 0.9375 = 3.56 in. 

 

For the 20 bolts adjacent to the end of the girder at the splice, the end distance is 2.0 in. (see 

Figure 20).  Therefore, the clear distance between the edge of the holes and the edge of the girder 

is: 

 

 Clear end distance = 2.0 – 0.9375 / 2 = 1.53 in. 

 

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 

less than 2.0d, Eq. 6.13.2.9-2 is to be used to compute the nominal bearing resistance, Rn: 

 

 Rn = 1.2 Lc t Fu = 1.2(1.53)(0.625)(65) = 74.6 kips/bolt 

 

Therefore, for the girder bottom flange, the factored bearing resistance at a single bolt hole is: 

 

 Rr = bbRn = (0.8)(74.6) = 59.7 kips/bolt 

 

For the bottom flange, the factored bearing resistance for the connection is computed by 

multiplying the single bolt hole resistance by the number of bolts on one side of the connection. 

Check this total resistance against the design force in the bottom flange, which is equal to 1,945 

kips: 

 

 Pr = (40 bolts)(59.7 kips/bolt) = 2388 kips > 1,946 kips  OK 

 

7.14.5.11 Strength Limit State Check of Web Splice Plates 

 

The web splice is conservatively designed assuming that the maximum moment and maximum 

shear at the splice occur under the same loading condition.  Article 6.13.6.1.4b states that the 

design shear is not to exceed the lesser of the factored shear resistance of the web splice plates 

specified in Article 6.13.4 (block shear rupture), or the factored shear resistance of the web splice 

plates specified in Article 6.13.5.3 (shear yielding and shear rupture). Also, at the strength limit 

state, the combined flexural and axial stress in the web splice plates is not to exceed the specified 

minimum yield strength of the splice plates times the resistance factor, f, specified in Article 

6.5.4.2. 
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Article 6.13.6.1.4b also specifies that for all limit states for tub sections in horizontally curved 

bridges, the shear due to factored loads is to be taken as the sum of the flexural and St. Venant 

torsional shears in the web subjected to additive shears.  For tub girders with inclined webs, the 

web splice is to be designed for the component of vertical shear in the plane of the web. 

 

Furthermore, webs are to be spliced symmetrically by plates on each side of the web, and the 

splice plates are to extend as near as practical to the full depth of the web between the flanges. 

 

Therefore, the following web splice plates are used: 

  

 Web plates: Two - 0.375 in. by 75.25 in. deep plates, Grade 50 steel 

 

For this design example, only the positive live load bending case will be used to illustrate the 

check of the web splice for the strength limit state. 

 

First, check the flexural yielding on the gross section of the web splice plates.  The design 

moments and design horizontal force were previously computed as: 

 

 Muv  =  127 kip-ft  [moment resulting from eccentricity of flexural shear] 

 Muw  =  1,307 kip-ft  [design moment in accordance with Eq. C6.13.6.1.4b-1] 

Huw  = 439 kips  [design horizontal force in accordance with Eq. C6.13.6.1.4b-2] 

 

The maximum combined flexural and axial stress in the web splice plates is computed as: 

 

 
g,SPL

uw

g,SPL

uwuv

web
A

H

S

MM
f 




 
  

 

where: 

 

 SSPL,g = gross section modulus of the web splice plates in the vertical plane (in.
2
) 

 ASPL,g = gross cross-sectional area of the web splice plates (in.
2
) 

 

 

  

   32

3

2x

gSPL, in. 666.214.04cos

2

75.25

12

75.250.375

2θcos
c

I
S 




















 

  

 

   2

gSPL, in. 56.475.250.3752A   

 

The combined maximum stress in the web splice plates for the positive live load bending case is 

computed as: 
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ksi 33.61
56.4

439

666.2

121,307127

A

H

S

MM
f

gSPL,

uw

gSPL,

uwuv
web 







 
  

 

Check that the combined flexural and axial stress in the web splice plates does not exceed the 

specified minimum yield strength of the splice plates times the resistance factor, f, specified in 

Article 6.5.4.2: 

 

    ksi 50501.0Fksi 33.61f yfweb    OK 

 

Check for shear yielding on the gross section of the web splice plates due to the in-plane design 

shear.  The in-plane design shear, Vuw, was previously computed as 406 kips.  In accordance 

with Article 6.13.5.3, the factored shear yielding resistance of the connection element is to be 

taken as: 

 

 vgyvr A F 0.58 R 
 

      Eq. (6.13.5.3-1) 

 

where: 

 

 v = resistance factor for shear as specified in Article 6.5.4.2 

 Fy = specified minimum yield strength of the connection element (ksi) 

 Avg = gross area of the connection element subject to shear (in.
2
) 

 

Therefore, the factored shear yielding resistance is computed as: 

 

      kips 1,63656.4500.581.0A F 0.58 R vgyvr 
 

  

 

The in-plane design shear is checked against the factored shear yielding resistance as follows: 

 

 kips 1,636Rkips 406V ruw 
 

OK 

 

Check for shear rupture on the net section of the web splice plates due to the in-plane design 

shear.  In accordance with Article 6.13.5.3, the factored shear rupture resistance of the 

connection elements is to be taken as: 

 

 vnupvur A F R 0.58 R 
 

     Eq. (6.13.5.3-2) 

 

where: 

 

 vu = resistance factor for shear rupture of connection elements as specified in Article 

6.5.4.2 (vu = 0.80) 

 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size 

and 1.0 for bolt holes drilled full size or subpunched and reamed to size.  1.0 is 

used in this example. 
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 Fu = ultimate tensile strength of the connection elements (ksi) 

 Avn = net area of the connection element subject to shear (in.
2
) 

 

Therefore, the factored shear rupture resistance is computed as: 

 

           kips 1,2779375.0375.0202-56.4650.10.580.80A F R 0.58 R vnupvur 
  

 

Check that the in-plane design shear is less than the factored shear rupture resistance: 

 

 kips 1,277Rkips 406V ruw 
 

OK 

 

 

7.14.5.12 Strength Limit State Check of Web Splice – Bearing on Girder Web 

 

Similar to the flange splices, it is necessary to check the bearing resistance of the web splice 

plate bolt holes at the strength limit state.  The calculation herein will simply use bolt forces and 

factored resistance computed previously within this design example. 

 

The maximum resultant in-plane force on the extreme bolt, Ru, was computed earlier to be 45.2 

kips.  The factored resistance for bearing on the girder web in the end column of bolts was 

previously computed as 52.65 kips.  Therefore: 

 

 Ru = 45.2 kips < bbRn = 52.65 kips/bolt OK 

 

Note that the web thickness is 0.5625 in., which is less than the total thickness of the two web 

splice plates (2 times 0.375 in. = 0.75 in.).  Therefore, bearing on the girder web governs as it has 

the smaller thickness. 

 

7.14.5.13 Strength Limit State Check of Web Splice Plates – Block Shear Rupture 

 

In accordance with Article 6.13.4, splice plates subjected to tension are to be investigated to 

ensure adequate connection material is provided to develop the factored block shear rupture 

resistance of the connection.  The connection is to be investigated by considering all possible 

failure planes in the member and connection plates.  Such planes are to include those that are 

parallel and perpendicular to the applied forces.  The planes parallel to the applied force are 

considered to resist only shear stresses.  The planes perpendicular to the applied force are 

considered to resist only tension stresses. 

 

Block shear rupture resistance normally does not govern for typical web splice plates, but the 

check is illustrated here for completeness.   

 

The factored resistance of the combination of parallel and perpendicular planes is computed in 

accordance with Eq. 6.13.4-1: 

 

   tnubsvgypbstnubsvnupbsr AFUAF58.0RAFUAF58.0RR    Eq. (6.13.4-1) 
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where: 

 

 bs = resistance for block shear rupture specified in Article 6.5.4.2 (bs = 0.80) 

 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size 

and 1.0 for bolt holes drilled full size or subpunched and reamed to size.  1.0 is 

used in this example. 

 Fu = specified minimum tensile strength of the connected material (ksi) 

 Avn = net area along the plane resisting shear stress (in.
2
) 

 Avg = gross area along the plane resisting shear stress (in.
2
) 

 Ubs = reduction factor for block shear rupture resistance taken equal to 0.50 when 

tension stress is non-uniform and 1.0 when the tension stress is uniform. 1.0 is 

used in this example since the tension stress is uniform. 

 Atn = net area along the plane resisting tension stress (in.
2
) 

 

First, compute the area terms, based on the block shear failure planes: 

 

    2

vg in. 44.65375.025.752A   

 

     2

vn in. 40.52375.00625.0875.05.20225.712A   

 

     2

tn in. 32.2375.00625.0875.05.15.132A   

 

Compute the factored resistance as follows: 

 

            kips 1,34332.2650.152.406558.00.180.0R 1r  (controls) 

 

          kips 1,43032.2650.144.565058.00.180.0R 2r   

 kips 1,343Rkips 406V ruw 
 

OK 

 

Similar calculations to those illustrated here for the web splice plates show that the factored 

block shear rupture resistance for the top and bottom flange splice plates is not exceeded by the 

flange design forces.  Calculations demonstrating the block shear rupture check of the top and 

bottom flange splice plates are not provided in this example.  
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8.0 SUMMARY OF DESIGN CHECKS AND PERFORMANCE RATIOS 

 

The results for this design example at each limit state are summarized below for the maximum 

positive moment and maximum negative moment locations.  The results for each limit state are 

expressed in terms of a performance ratio, defined as the ratio of a calculated value due to 

applied loads to the corresponding resistance. 

Maximum Positive Moment Region, Span 1 (Section G2-1) 

Constructibility 

 Flexure (Strength I) 

  Eq. (6.10.3.2.1-1) – Top Flange Yielding   0.424 

                      Eq. (6.10.3.2.1-2) – Top Flange Local Buckling  0.332 

  Eq. (6.10.3.2.1-2) – Top Flange Lateral Torsional Buck. 0.348 

  Eq. (6.10.3.2.1-3) – Top Flange Web Bend Buckling 0.356 

  Eq. (6.11.3.2-3) – Bottom Flange Yielding   0.246 

 

Service Limit State 

 No checks required in this design example 

 

Fatigue Limit State 

 Flexure (Fatigue I) 

  Eq. (6.6.1.2.2-1) – Bottom Flange    0.426 

 

Strength Limit State 

 Ductility Requirement – Eq. (6.10.7.3-1)    0.330 

 Flexure (Strength I) 

  Eq. (6.11.7.2.1-1) – Top Flange    0.507 

  Eq. (6.11.7.2.2-5) – Bottom Flange    0.802 

  Article 6.11.7.2.1 – Concrete Deck Stresses   0.417 

 

Interior Support, Maximum Negative Moment (Section G2-2) 

Constructibility 

 Flexure (Strength I) 

  Eq. (6.10.3.2.2-1) – Top Flange Yielding   0.547 

  Eq. (6.11.3.2-1) – Bottom Flange Local Buckling  0.432 

 Shear (Strength I) 

  Eq. (6.10.3.3-1)      0.348 

 

Service Limit State (Service II) 

 Web Bend-Buckling - Eq. (6.10.4.2.2-4)    0.841 

 

Fatigue Limit State 

 Flexure (Fatigue I) 

  Eq. (6.6.1.2.2-1) – Top Flange    0.034 

 

Strength Limit State  

 Flexure (Strength I) 
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  Eq. (6.11.8.1.2-1) – Top Flange Yielding   0.888 

  Eq. (6.11.8.1.1-1) – Bottom Flange Local Buckling  0.884 

  Eq. (C6.11.8.1.1-1) – Bottom Flange    0.849 

  Article 6.11.1.1 

   Bottom Flange cross-section distortional stresses 0.478 

 Shear (Strength I) – Eq. (6.10.9.1-1)     0.639 
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